
VARIO-SCALE DATA STRUCTURES
FOR 2D AND 3D GEO-INFORMATION1

1Peter van Oosterom, 1Martijn Meijers

1Delft University of Technology, OTB Research Institute for the Built Environment
P.O. Box 5030, 2600 GA Delft, THE NETHERLANDS.

email: 1P.J.M.vanOosterom@tudelft.nl and 2B.M.Meijers@tudelft.nl

Abstract

This paper introduces the concept of the smooth tGAP structure represented by a space-scale
partition, which we term the space-scale cube. We take the view of 'map generalization is
extrusion of data into an additional dimension'. For 2D objects the resulting vario-scale
representation is a 3D structure, while for 3D objects the resulting vario-scale representation
is a 4D structure. This paper provides insights in: 1. creating valid data for the cube and
proof that this always possible for the implemented 2D tGAP (topological Generalized Area
Partition) generalization operators (line simplification, merge, and split/collapse), 2.
obtaining a valid 2D polygonal map representation at arbitrary scale from the cube, 3. using
the vario-scale structure to provide smooth-zoom and progressive transfer between server
and client, 4. exploring which other possibilities the cube brings for obtaining maps having
non-homogenous scales over their domain (which we term mixed-scale maps), and 5. using
the same principles also for higher dimensional data; illustrated with 3D input data
represented in a 4D hypercube.

Keywords: vario-scale, generalization, progressive transfer, smooth zoom

1 INTRODUCTION

Technological advancements have lead to maps being used virtually everywhere; e.g. mobile
smartphones. Map use is more interactive than ever before: users can zoom in, out and
navigate on the (interactive) maps. Therefore recent map generalization research shows a
move towards continuous generalization. Although there are some useful efforts (van
Kreveld, 2001; Sester and Brenner, 2005), there is no optimal solution yet.
This paper introduces the first true vario-scale structure for geographic information: a small
step in the scale dimension leads to a small change in representation of geographic features
that are represented on the map. From the structure continuous generalizations of real world
features can be derived and can be used for presenting a smooth zoom action to the user.
Furthermore, mixed-scale visualizations can be derived (more and less generalized features
shown together in one visualization), in which the objects are consistent with each other.
Making such a transition area is mostly one of the difficulties for 3D computer graphic
solutions (e.g. using stitch strips based on triangles, like in Noguera et al., 2010).
The remainder of this paper is structured as follows: Section 2 contains a discussion how the
classic tGAP structure can be represented by a 3D space-scale cube and how this can adapted

1 This paper is also published in the annual report of the Royal Netherlands Academy of Arts and Sciences/
Netherlands Geodetic Commission (KNAW/NCG), Delft, 2012, pages 21-42. ISBN: 978 90 6132 339 6.

mailto:P.J.M.vanOosterom@tudelft.nl
mailto:B.M.Meijers@tudelft.nl

to store more continuous generalization. The use and application of the smooth tGAP
structure is further discussed in Section 3. Section 4 proofs that for all configurations it is
possible to create the smooth tGAP structure: including convex areas and areas with holes.
The presented data structures and methods are valid for both 2D and 3D data. Section 5
discusses how the method is used for 3D data resulting in a 4D space-scale cube representing
the smooth tGAP structure. The paper is concluded with a short description of the main
results, together with a summation of a long list of open research questions, in Section 6.

2 THE SMOOTH tGAP STRUCTURE

The tGAP structure has been presented as a vario-scale structure (van Oosterom, 2005). In
summary, the tGAP structure traditionally starts with a planar partition at the most detailed
level (largest scale). Next the least important object (based on geometry and classification) is
selected, and then merged with the most compatible neighbour (again based on geometry and
classification). This is repeated until only a single object is remaining, the merging of objects
is recorded in tGAP-tree structure and the last object is the top of the tree. The (parallel)
simplification of the boundaries is also executed during this process and can be recorded in a
specific structure per boundary: the BLG-tree (binary line generalization). As assigning the
least important object in certain cases to just a single neighbour may result in a suboptimal
map representation, the weighted split (and assigning the various parts to multiple
neighbours) was introduced. This changed the tGAP-tree into a tGAP Directed Acyclic
Graph (DAG) and together with the BLG-tree, this is called the tGAP structure. The tGAP
structure can be seen as result of the generalization process and can be used to efficiently
select a representation at any required level of detail (scale or importance). Figure 1 shows 4
map fragments and the tGAP structure in which the following generalization operations have
been applied:
1. Collapse road object from area to line (split area of the road and assign parts to

neighbours);
2. Remove forest area and merge free space into neighbour farmland;
3. Simplify boundary between farmland and water area.

(a) Original map (b) Result of collapse (c) Result of merge (d) Result of simplify

(e) Corresponding tGAP structure
Figure 1: The 4 map fragments and corresponding tGAP structure

2.1 The tGAP structure represented by the 3D space-scale cube

The tGAP structure is a DAG and not a tree structure, as the split causes the road object to
have several parents; see Figure 1(e). In our current implementation the simplify operation on
the relevant boundaries is combined with the remove or collapse/split operators and is not a
separate step. However, for the purpose of this paper it is more clear to illustrate these
operators separately. For the tGAP structure, the scale has been depicted as third dimension –
the integrated space-scale cube (SSC) representation (Vermeij et al., 2003; Meijers and van
Oosterom, 2011). We termed this representation the space-scale cube in analogy with the
space-time cube as first introduced by Hägerstrand (1970). Figure 2(a) shows this 3D
representation for the example scene of Figure 1. In the SSC the vario-scale 2D area objects
are represented by 3D volumes (prisms), the vario-scale 1D line objects are represented by
2D vertical faces (for example the collapsed road), and the vario-scale 0D point object would
be represented by a 1D vertical line. Note that in the case of the road area collapsed to a line,
the vario-scale representation consist of a compound geometry with a 3D volume-part and
2D face-part attached.

(a) SSC for the classic tGAP structure (b) SSC for the smooth tGAP structure
Figure 2: The space-scale cube (SSC) representation in 3D

Though many small steps (from most detailed to most coarse representation – in the classic
tGAP, n – 1 steps exist, if the base map contains n objects), this could still be considered as
many discrete generalization actions approaching vario-scale, but not true vario-scale. Split
and merge operations do cause a sudden local 'shock': a small scale change results in a not so
small geometry change; e.g. leading to complete objects disappearing; see Figure 3. In the
space-scale cube this is represented by a horizontal face; a sudden end or start of
corresponding object. Furthermore, polygon boundaries define faces that are all vertical in
the cube, i.e. the geometry does not change at all within the corresponding scale range
(resulting in the collection of fitting prism shapes, a full partition of the space-scale cube).

(a) Wireframe of (classic)
space-scale cube

(b) Slices for Step 1 (c) Slices for Step 2 (d) Slices for Step 3

Figure 3: The map slices of the classic tGAP structure: (b) step 1 (collapse), (c) step 2 (merge) and (d) step 3
(simplify). Note that nothing changes until a true tGAP event has happened.

2.2 Smooth line simplification

In order to obtain more gradual changes when zooming, i.e. in a morphing style (c.f. Sester
and Brenner, 2005; Nöllenburg et al., 2008), we first realised that the line simplification
operation could also output non-vertical faces for the space-scale cube and that this has a
more true vario-scale character; e.g. when replacing two neighbouring line segments by a
single new line segment (omitting the shared node), this can be represented by three
triangular faces in the space-scale cube; see Figure 4. Note that both the sudden-change line
simplification and the gradual-change line simplification have both 3 faces in the SSC:
sudden-change has 2 rectangles and 1 triangle and gradual-change has 3 triangles. When
slicing a map based on the SSC fragment as depicted in Figure 4(b) (to 'slice' means taking a
cross-section of the cube) at a certain scale, a delta in scale leads to a derived delta in the
map. That is, a small change in the geometry of the depicted map objects and no sudden
change any more, as was the case with the horizontal faces parallel with the bottom of the
cube, which were the results of the merge or split operations. Note that the more general line
simplification (removing more than one node of a polyline) can be considered to consist of
several smaller sub-steps: one step for the removal of each of the nodes.

(a) Sudden-change line simplification:
2 rectangles and 1 triangle

(b) Gradual-change line simplification:: 3 triangles

Figure 4: Line simplification in the SSC: (a) sudden removal of node, (b) gradual change. The dashed lines in
(b) only illustrate the difference with the sudden-change variant.

2.3 Smooth merge and split

The merge and split (collapse) operations can, similar to the gradual line simplification
operation as sketched above, be redefined as gradual actions supporting smooth zoom. For
example in case of the merge of two objects: one object gradually grows and the other shrinks
– in a space-scale cube this corresponds to non-vertical faces (and there is no more need for a

horizontal face, i.e. a suddenly disappearing feature); see Figure 2(b). All horizontal faces in
the cube are now gone, except the bottom and top faces of the cube. Note that adjacent faces
in the same plane belonging to the same object are merged into one larger face, e.g. the big
front-right face in Figure 2(b) corresponds to four faces in Figure 2(a). The same is true for
the involved edges, several smaller edges on straight lines are merged, and the shared nodes
are removed. This can be done because they carry no extra information. Perhaps the most
important and elegant consequence is that the merging of the different polyhedral volumes
belonging to the same real world object is that also the number of volumes is reduced: there
is a one-to-one correspondence between a single object and its smooth tGAP polyhedral
representation, valid for all relevant map scales. The benefit of a smaller number of
primitives, the nodes, edges, faces and volumes, is that there are also less topology references
needed to represent the whole structure. In previous investigations it was reported that the
storage requirements for an explicit topology structure may be as high as, or even higher
than, the storage requirements for plain geometry (see previous tests, described in Louwsma
et al., 2003; Baars et al., 2004; Penninga, 2004). This is even more true for topology based
vario-scale data structures (c. f. Meijers et al., 2009). Lighter structures are more suitable for
(progressive) data transfer and high(er) performance. Figure 5 illustrates the resulting true
vario-scale structure: small deltas in scale will give small deltas for map areas.

(a) Wireframe of (smooth)
space-scale cube

(b) Slices for Step 1 (c) Slices for Step 2 (d) Slices for Step 3

Figure 5: The map slices of the smooth tGAP structure: (b) step 1 (collapse), (c) step 2 (merge) and (d) step 3
(simplify). Note the continuous changes, also in between the ‘true’ tGAP events.

3 ADVANCED USE OF THE SMOOTH tGAP

In this section a number of more advanced usages of the smooth tGAP structure will be
discussed. That is using the SSC for more than only for horizontal slices at an arbitrary scale
to create a representation which is homogenous with respect to the map scale. First, it will be
illustrated how a mixed scale representation can be obtained from the smooth tGAP structure
in Subsection 3.1. The next subsection explains how the structure can be used to support
progressive transfer in a client-server setting.

3.1 Mixed scale representations

So far, only horizontal slices parallel to the bottom and top of the cube were discussed and
used for creating 2D maps with homogenous scale. It is not strictly necessary to do parallel
slices, nothing prevents from taking non-horizontal slices. Figure 6 illustrates a mixed-scale
map derived as a non-horizontal slice from the SSC. What does such a non-horizontal slice
mean? More detail at side where slice is close to the bottom of the cube, less detail at the side

where slice is closer to the top. Compare to 3D visualizations, where close to the eye of the
observer lots of detail is needed, while further away not so much detail. Such a slice leads to
a mixed-scale map, as the map contains more generalized features far away (intended for
display on small scale) and less generalized features close to the observer (large scale).

(a) A set of smooth slices derived
from the SSC

(b) How the non-horizontal slice
of (c) is taken.

(c) Corresponding mixed-scale map
(non-horizontal slice): top of map
shows more generalized features

than bottom
Figure 6: Checkerboard data as input: each rectangular feature is smoothly merged to a neighbour. Subfigures

show: (a) a stack of horizontal slices, (b) taking a non-horizontal slice leads to a ‘mixed- scale’ map and (c) one
mixed scale slice (non-horizontal plane).

The mixed-scale representation can also be obtained by slicing surfaces that are non-planar;
e.g. a bellshape surface that could be used to create a meaningful 'fish-eye' type of
visualizations (see Figure 7). This should be investigated with respect to the planar partition
characteristic of the resulting maps. Probably OK in most situations, but it might be true that
a single area object, in original data set, might result in multiple parts in the slice (but no
overlaps or gaps will occur in the slice). What are other useful slicing surface shapes?
Folding back surfaces seam to be non-sense as this will give two representations of the same
object on same real world location in one map/visualization.

(a) (b) (c)
Figure 7: A ‘mixed-scale’ map. Harrie et al. term this type of map a ‘vario-scale’ map, while we term this a

‘mixed-scale’ map. Furthermore it is clear that there is a need for extra generalization closer to the borders of
the map, which is not applied in (b), but is applied in (c). With our solution, this generalization would be

automatically applied by taking the corresponding slice (bell-shaped, curved surface) from the SSC.
Illustrations (a) and (b) taken from Harrie et al. (2002) and (c) from Hampe et al. (2004).

3.2 Smooth zoom and progressive transfer

In an online usage scenario where a 2D map is retrieved from the tGAP structures, the
amount of vector information to be processed has an impact on the processing time for
display on the client. Therefore, as a rule of thumb, we strive to show a fixed number of
(area) objects on the map, independent from the level of detail the objects have, in such a way
that the optimal number of objects is displayed; i.e. optimal information density. This number
is termed here the optimal number of map objects and will be used for retrieving data in such
a way, that the amount of objects, i.e. faces and edges (with certain number of coordinates),
to be retrieved on average remains constant per viewport (independent from which level of
detail is retrieved) and thereby the transfer and processing times stay within limits.

The optimal number can be realised, because the generalisation procedures that create tGAP
data incrementally lead to less and less data in the hierarchy, i.e. less data is stored near the
top of the space-scale cube (SSC) and the extent of area objects near the top of the cube is
considerably larger (with a limited number of coordinates in their boundaries) than at the
bottom (with more coordinates in their boundaries). A slice (cross section) in this cube leads
to a 2D map. The extent of the viewport (i.e. the window through which the user is looking at
the data) also implies that it is necessary to take a clip of data out of such a slice: when a user
is zoomed out, the viewport of a user will lead to a big extent (the area to be clipped is large)
and when a user is zoomed in this extent will become considerably smaller. For a user that
performs a panning action it is necessary to move the extent of the clip within the horizontal
slicing plane. Figure 8 gives an illustration. A smooth tGAP based server can be arranged to
respond to the following types of requests from a smooth tGAP-aware client (illustrated for
2D maps represented by a 3D space-scale cube):
1. A request to provide an initial map based on simple 2D spatial range overlap selection of

the relevant 3D polyhedra representing the vario-scale 2D objects in the requested area
A1 for the requested scale s1 as illustrated in Figure 8(a). Note that the number of selected
objects may be relatively large, so it can take some time before a map covering a
requested area A1 can be created by the client.

2. A request to provide an initial map based on overlap with a simple 3D block, i.e. a
(orthogonal) spatial-scale range, overlap selection of the relevant 3D polyhedra
representing the vario-scale 2D objects starting from the smallest scale sn (most coarse
representation) until the required scale s1 as illustrated in Figure 8(b). The server sends
the selected 3D polyhedra sorted on smallest scale value, which enables progressive
transfer for an area A1. The client can quickly start drawing an initial course
representation, while still receiving additional detail.

3. A request to provide the 3D polyhedra for a progressive zoom-in as shown in Figure 8(c).
Note the shrinking of the spatial selection range from an area A1 at scale s1 to an area A0
at scale s0 (a truncated pyramid up-side-down). Alternatively it is possible to provide data
for a simple zoom-in. In that case the client does not need to receive 'intermediate' 3D
polyhedra (this alternative is not depicted in Figure 8).

4. A request to provide the 3D polyhedra for a progressive zoom-out as shown in Figure
8(d). Note the growing of the spatial selection range from an area A1 at scale s1 to an area
A2 at scale s2. In this case the 3D polyhedra are sorted based on largest scale value from
the larger to the smaller scale without sending 'intermediate' 3D polyhedra (again, not
depicted in Figure 8).

5. A request to provide the 3D polyhedra for a simple pan operation from a first area A1 to
an adjacent area A3 represented at the same scale s1 as shown in Figure 8(e). In that case

the server immediately transmits the object data for the new map at the required level of
detail.

6. A request to provide the 3D polyhedra for a progressive transfer pan as shown in Figure
8(f) from a first area A1 to a second area A3. In that case the server subsequently
transmits more and more detailed data (gradually changing from scale sn to scale s1) for
the requested spatial range A3, and the client can gradually increase the level of detail
with which the image data in said spatial range A2 is displayed.

Figure 8. Zooming & panning with vario-scale data explained with the SSC (after van Oosterom and Meijers,
2011a).

Note that the client has to be smooth tGAP-aware, after receiving the polyhedra (in sorted
order) it has to perform slicing before the actual display on the screen takes place. In case of
'smooth' zoom-operations, the slicing operations are repeated (at slightly different scale
levels) before every display action. Note that an efficient implementation may exploit the fact
that the slicing plane is moving monotonically in certain direction (up or down) and may
avoid repeating parts of the needed geometric computations. This is similar to the plane-
sweep algorithm as used in computational geometry.

Positioning the height of the slice in the cube, together with taking the clip, should lead to a
constant number of objects to be visualised. To realise the position of the cross section means
that the question to be answered is 'which importance value corresponds to the map scale at
the client?' In practice this will mean that a thin client will only have to report the current
extent (plus its device characteristics) to a server and then can be sure to receive the right
amount of data for a specific level of detail as the server can translate this extent to a suitable
importance value to query the data structures. Make note that this on average is the right
amount of information, as there may be regions with more or with less dense content than on
average; e.g. rural vs. urban area.

4 CREATING THE STRUCTURE AND PROOF OF CORRECTNESS

This section discusses the question whether prism resulting split and merge operations
(horizontal and vertical faces) can always be transformed into their smooth counterparts with
non-horizontal faces? We provide the (intuitive) proof that the smooth tGAP structure can be
created in all situations: including non-convex areas and areas with holes. The first
generalization operation introduced in the smooth tGAP was line simplification. One could
wonder whether it is always possible to create a smooth tGAP structure and whether
replacing the horizontal and vertical faces related to a simplified line by a set of tilted faces
will not create errors (intersection faces). In (Meijers, 2011) it was proven that it is possible
to perform a topology error-free simplification of the lines. Starting with the guarantee that if
there are no errors in the partition of the start scale, then there are also no errors in the
resulting scale. Given this, it is then also possible to create a smooth tGAP (3D SSC) without
any topology error (also error-free at the intermediate scales). This is because the new, tilted
faces, are always moving within the 'free space' and can not intersect with other geometries.

Next question is whether it is always possible to realize a smooth merge without topology
errors. The example data set, as used in Section 2, only shows very simple (convex) shapes to
be removed and merged with its neighbour. It is easy to imagine that when there are two
neighbouring equal rectangles, how one rectangle gradually has to take the space of the other
rectangle and that the resulting non-horizontal faces in the smooth tGAP structure will be
flat. The question that arises: Is this always possible for any pair of arbitrarily shaped
neighbours or configurations with island polygons included? Answer: Yes. Proof: it is
possible for strictly convex parts2 of the disappearing area to be 'processed', using the
following algorithm (see Figure 9):
– Count the number of interior nodes on the boundary to be removed (the so called 'shared

boundary') and on the boundary to be moved to (the so called 'opposite boundary'). Note
that at least one of these boundaries has the minimum number of 1 intermediate node,
otherwise the neighbour to be removed would have no area.

– If unequal, add the missing number of (fake) nodes fairly distributed to the boundary with
the too low number. The number of intermediate nodes is called I(>0) and is equal in
both boundaries.

– Now that both boundaries have an equal number of nodes, add edges between each pair
of corresponding intermediate nodes (so at least one edge is added).

– This results in two faces with three nodes and I – 1 faces with four nodes (and also four)
edges. If such a quadrangle face is not flat in 3D space, then add an additional diagonal
edge and the resulting two triangles will be per definition flat.

Figure 9: The simple neighbour merge: one rectangular feature is smoothly merged into rectangular neighbour
feature. Note that the plane that forms the boundary between the two features is composed of 2 triangular and 1

quadrilateral faces (these faces can be dissolved by post-processing into 1 face, as they are planar).

2 A simple polygon is strictly convex if every internal angle is strictly less than 180 degrees (so not equal to 180
degrees).

Note that this 'simple' algorithm may add some unneeded (temporary) nodes. Imagine two
equal shaped neighbour rectangles, then a single diagonal face is sufficient. However, our
algorithm would add two intermediate nodes (on the shared boundary) and create two
triangles and one 4-node face. In a planarity check it may be detected that these faces are co-
planar and can be merged (and same for split edges and added node may be removed). So,
the final result is equal after this post-processing.

Because of the convex shape, there will never be intersecting edges or faces. If the to be
merged shape is concave, then decompose it in convex parts and treat the convex parts one
by one. The order in which this should be done is to start with a direct neighbour part of the
growing area (and repeat until all parts are processed); see Figure 10(a). Note that this
algorithm also works when the to be merged neighbour has an island: creating the strictly
convex parts and processing these with the algorithm above will give correct results in the
SSC; see Figure 10(b). Furthermore, this approach will also work as post-processing of a
split operation: the split operation delivers boundaries to move to. Each part of a split
polygon can, following the sketched recipe, result in a gradual merge with its neighbour.

Figure 10. The processing of complex shapes into vario-scale representations. Note that quadrilaterals will not
be planar and will have to be decomposed into triangular faces by adding an extra diagional.

A second approach, which does not require the 1-to-1 connection between intermediate
nodes (but still requires convex parts) is as follows and illustrated in Figure 11: Count the
number of segments in the shared (n1) and the opposite boundary (n2). Now there will be n1
triangles constructed, which will have their base in the shared boundary (and the remaining
vertex on the opposite boundary) and n2 – 2 triangles which will have their base in the
opposite boundary (and the remaining vertex on the shared boundary). This approach does
not require post-processing. The 3D polyhedron corresponding to the vario-scale
representation of a 2D area has different types of boundaries: at bottom (largest) and top
(smallest) scale, these 2D boundaries of the 3D polyhedron are the two fixed-scale
representations of this area. Between these scales, there are other 2D boundaries (in 3D
space) connecting these fixed-scale representations. These boundaries are called the trans-
scale boundaries. The combination of the fixed-scale and the trans-scale boundaries will
result in a completely closed polyhedron.

Figure 11. Alternative way of constructing non-horizontal faces. In this example 7 triangles have their base in
the shared boundary and 5 – 2 = 3 triangles have their base in the opposite boundary.

5 THE 3D SMOOTH tGAP STRUCTURE

Until now a 2D base map was used. It is also possible to start with a 3D base map (model)
and then create in a similar manner a 4D space-scale hypercube. The creation and use of the
smooth tGAP structure is much the same as in 2D. In subsection 5.1 it will be illustrated how
the 4D hypercube can be created and also how a hyperplane in 4D space can be used to slice
and result in a representation of 3D objects at the required homogenous scale (Level of
Detail). In subsection 5.2 it will be explored how a 3D mixed scale representation can be
obtained by using non-horizontal slicing hyperplanes.

5.1 Creation of 4D scale-space hypercube

To illustrate that the smooth tGAP is equally applicable to higher dimensional objects, we
show the following 3D example leading to a 4D hypercube. Figure 12(a) and (d) respectively
show a higher and a lower detailed 3D object representation. In the higher detailed 3D
representation objects zi and zii are each represented as 3D-objects (n-dimensional). The
objects zi, zii are delimited by 2D boundaries ((n – 1)-dimensional) having at least one
boundary segment. In this case each object is delimited by its set of faces, front face, back
face, left side face, right side face, bottom face and top face. Note that object zii has 7 faces,
because the left face has 2 parts: one of which is shared with object zi. These faces form the
boundary segments.

Figure 12. A simple 3D scene: the more important object zii gradually takes over the lesser important object zi.

Figure 12(a) shows a set of two 3D objects having the highest level of detail. Object zi
represents for example a first building, object zii represents a second building. Also a lower
level of detail 3D object representation is generated as shown in Figure 12(d). In this lower
detailed 3D object-representation the original objects zi and zii are merged into object ZII.
Figure 12(b) and (c) show subsequent intermediate 3D representations. One could argue that
this is a simple case, and the question remains if such a smooth transformation is also
possible in an arbitrary 3D situation of merging a disappearing 3D object into its neighbour.
Therefore, Figures 13(a)-(c) show how a topological correct mapping (gradual transition) is
achieved using a generic approach as further explained below. A generic gradual transition is
shown with a growing object zii and a shrinking and gradually disappearing object zi.

Figure 13. Alternative manner for gradually taking over the space of the lesser important object by the more
important object.

Figure 13(a) again shows the higher detailed 3D object-presentation as in Figure 12(a).
Objects zi, zii are convex objects3 that have a shared boundary formed by the right side-face
(dark) of object zi. Object zi is to be removed in a merge operation with growing object zii. In
the lower detailed 3D object representation of Figure 12(d), this shared boundary is mapped
to a destination boundary comprising bottom face 1, top face 3, front face 2, back face 4 and
left side face 5 as indicated in Figure 13(a). As shown in Figure 13(b), the shared boundary
between the objects zi and zii is now partitioned into boundary segments to equalize the
number of faces, edges and nodes in the shared boundary and the destination (or opposite)
boundary. In the example shown the shared boundary is provided with additional nodes a, b,
c, d that are mapped to nodes A, B, C, D, edges a – b, b – c, etcetera mapped to A – B, B – C,
etcetera, and faces 1 to 5 that are mapped to faces 1 to 5 of the destination (opposite)
boundary. Lower and higher case characters indicate elements in the higher-detailed 3D
representation and in the lower detailed 3D-representation respectively.

A 4D object representation is constructed, that has in addition to the spatial dimensions of the
3D object representations an additional scale dimension integrated. The higher and the lower
detailed 3D object representations are assigned a first and a second value (s1, s2 of scale level
s) for the scale dimension respectively. For example, nodes a, b, c, d of the object zii in the
higher detailed representation are defined by their 3D spatial coordinates x, y, z and a value s1
for the scale coordinate s. For example nodes A, B, C, D in the lower detailed representation
are defined by their 3D spatial coordinates x, y, z and a value s2 for fourth coordinate s. These

3 In case of a concave object, this is then first decomposed into its convex parts, similar to the 2D approach.

two 3D representations at fixed scales s1 and s2 form the first two boundaries of the 4D SSC
representation (the 'fixed scale' boundaries).

Next a trans-scale boundary is constructed that is delimited between mutually corresponding
2D boundary segments of one object in the higher detailed and the lower detailed 3D
representation. In this case the 2D boundary segments of object zii (faces) in the higher
detailed representation are the top, bottom front, back, right and two left side face of object
zii. The lower left side face of object zii forms a shared boundary with object zi and a
remaining portion, not shared with object zi. The shared portion is partitioned in faces 1 to 5
that are mapped to faces 1 to 5 of the destination (opposite) boundary as indicated above.
Each pair of a face 1 to 5 and its corresponding face 1 to 5 to which it is mapped delimits a
trans-scale n-dimensional boundary segment in (n+1)-dimensional space. For example
consider face 1 in the shared boundary, which is defined by nodes a, d, f, e in the higher
detailed representation. This face 1 is mapped to corresponding face 1 in the destination
boundary defined by A, D, F, E in the lower detailed representation. For clarity labels E, F
are not shown in the drawing. Node E has the same values for the coordinates x, y, z as its
corresponding node e, but only has a different scale value, s2 instead of s1. Likewise node F
only differs by its scale value from node f. The trans-scale boundary segment delimited by
face 1: a, d, e, f in the higher detailed representation and its corresponding face 1: A, D, E, F
in the lower detailed representation comprises four other faces: a first face a, d, D, A; a
second face d, f, F, D; a third face f, e, E, F and a fourth face e, a, A, E. Together these faces
form one of the 3D boundaries (n dimensional) of the 4D representation (n+1 dimensional).
Analogously, a trans-scale boundary segment is constructed that is delimited between each of
the other faces 2 to 5 in the higher detailed object-representation and its corresponding one of
the other faces in the lower detailed object-representation. Further, analogously respective
trans-scale boundary segments are constructed that each are delimited between each of the
other faces of object zii not part of the shared boundary in the higher detailed object-
representation and their corresponding one of the other faces in the lower detailed object-
representation.

The concatenation of all trans-scale (n = 3)-dimensional boundary segments with the two 3D
fixed scale (boundary) representations of the object (zii at scale s1 and ZII at scale s2) forms
the vario-scale (n+1= 4)-dimensional representation associated with the object zii-ZII. An
intermediate 3D representation for object zii is now obtained by calculating a cross-section
between a 3D slicing hyperplane (object) and the constructed 4D representation, wherein the
cross-section of said trans-scale boundary with the slicing object forms the boundary of the
corresponding object assigned to said object in the intermediate 3D representation.

Analogous to the 2D case the slicing object may be formed by an horizontal hyperplane (3D
hyperplane in 4D space), that is, an object according to the definition s = constant, wherein
said constant value is a value in the range between s1 and s2. Alternatively the value s may
be a function of one or more of the coordinates x, y, z, so that the intermediate representation
has a level of detail that is position dependent; e.g. to support the generation of 3D
perspective views (non-horizontal slicing hyperplanes); see Subsection 5.2.

Figure 13(c) shows an example of an intermediate representation obtained, in the generic
general transition, when the slicing object has a value s equal to (s1+s2) : 2. In the so
obtained intermediary representation the original boundary is extended with the volume
indicated by dotted lines. One could argue that the general approach results in less attractive
intermediate representations, compare to the simple approach of Figure 12(b) and (c).

However, the point of the generic approach is to proof that it is always possible to have a
gradual transition. Another advantage of the generic approach is that it does not affect the
faces, edges and nodes on the non-shared outside surface patches of the disappearing object.
So, no topology problems will occur with third (non-depicted) objects.

For clarity the present example is on purpose set out for a simple case, where only a limited
number of objects is involved and it is shown how the trans-scale boundary is calculated for a
single object. In practice the higher and the lower detailed n-dimensional representation may
represent plurality of objects; e.g. forming a partition of space (at every scale). The step of
determining the trans-scale boundary and the step of calculating the cross-section is executed
for each of the objects. In practice a boundary segment of an object is shared with another
object. Accordingly once a trans-scale boundary element delimited by the boundary segment
in the higher detailed representation and its corresponding boundary segment in the lower
detailed representation is calculated for an object, it can be reused for the other object sharing
said boundary element.

Figure 14(a)-(c) show examples of a simplify operation in the 3D case. Figure 14(a) shows a
merged object ZII obtained by a merging operation as illustrated with reference to Figure
12(a)-(d) and with reference to Figure 13(a)-(c). Figure 14(b) shows a result according to a
simplify operation of a first type, wherein the object is approximated by its 'bounding box',
i.e. the smallest cuboid that contains the object. Figure 14(c) shows a result according to a
simplify operation of a second type, wherein the object is otherwise approximated (with a
tilted roof). Note that the non-depicted neighbour volume objects are affected.

Figure 14. Two alternative options for the boundary simplification of the object ZII.

Figure 15(a) and (b) show a pseudo 4D impression for the merge followed by one of the two
simplify options. In this view it is shown how an (n+1)-dimensional object representation is
constructed, having in addition to the geometric dimensions x, y, z, the additional scale
dimension s. Representations are assigned a first and a second value s1, s2 for the additional
scale dimension respectively. Figure 15(a) shows how the higher detailed 3D representation
for object zii is assigned scale value s1 in the 4D object-representation and how the lower
detailed 3D representation for the resulting merged and simplified object ZII' (first type of
simplification) is assigned scale value s2 in the 4D object-representation. The dotted lines
indicate the relation between mutually corresponding nodes in the representations for s1 and
s2. Figure 15(b) shows how the higher detailed 3D representation for object zii is assigned
scale value s1 in the 4D objectrepresentation and how the lower detailed 3D representation
for the resulting merged and simplified object ZII'' (second type simplification) is assigned
scale value s2 in the 4D object-representation. The dotted lines indicate the trans-scale
boundary segments (3D primitives in 4D space) between mutually corresponding nodes in the
representations for s1 and s2.

Figure 15. A pseudo 4D illustration of our simple 3D scene with two alternative vario-scale representations.
Object zi is only shown for reference purposes. The grey lines llustrate the vario-scale representation of the

second object; zii is gradually changed into ZII', respectively ZII'' (depending on which simplification option is
chosen).

5.2 Using the 4D hypercube to derive 3D mixed scale representations

The result is a 4D data structure, based on a partition of the integrated 3D space and scale
representation (4D SSC). It should be noted that this is not only a representation in a higher
dimensional (4D) space, but that also the higher dimensional primitives are really used. A 4D
primitive in this structure corresponds to a vario-scale representation of a (3D) real world
object. The boundaries of this 4D primitive are formed by two 3D representations at start and
end scale (higher and lower detailed representations), which are connected by trans-scale
boundaries (3D primitives).

Note that perhaps the mixed-scale representation might be a bit uncommon for 2D data, but
this could be applied a lot in the case of 3D data. A perspective view in 3D computer
graphics (for CAD systems or 3D games) would be very well served with such a mixed-scale
representation. However, all known 3D computer graphics methods are based on a fixed
number of levels of details (LoDs). The drawback is that there is not only redundancy in
these LoDs, but that when going from one LoD to the next LoD there are always 'fitting'
problems. In fact these are topology errors in the 'mixed' scale representation based on
multiple LoDs. These sliver errors, small overlaps or gaps in the transition between two
LoDs, distract the user (viewer) of the 3D data during the interaction. The smooth tGAP
structure (4D) enables to obtain a 3D mixed-scale representation without topology errors: a
perfect partition of the 3D space. This is achieved by slicing with a tilted 4D hyperplane.

The 4D space-scale hypercube can be used for good perspective view visualizations by taking
non-horizontal scale slices: near to the viewer a lot of detail (low in scale) far away from the
viewer not so much detail (high in scale). The intersection of this 4D hypercube with the 3D
hyperplane gives a perfect 3D topology: all representations do fit without gaps or overlaps.
This solves a big problem as often the case in the transition from one Level of Detail (LoD)
to the next LoD in computer graphics. Interesting 'implementation' issues will arise: How can
the slicing in the 4D hypercube be done efficiently? Is this efficient enough for interactive
rendering performance (50 - 100 times per second)? The result of a slicing operation is a 3D
model and still has to be rendered on a 2D display (or 3D stereo device). Note that we should
attempt to apply hyperplane-sweep methods (to avoid unneeded computations). Would it be
possible to combine the above two steps in a single operation on the 4D hypercube (selection
and transformation for display)? What steps can be done in hardware and what needs to be
done in software?

6 CONCLUSION AND FUTURE WORK

In this section first the main results of our research are presented and then the paper is
concluded with a long list of on-going and future work, aiming to resolve the open questions.

6.1 Main results

This paper has introduced the first true vario-scale structure for geographic information: a
delta in scale leads to a delta in the map (and smaller scale deltas lead to smaller map deltas
until and including the infinitesimal small delta) for all scales. The smoothness is
accomplished by removing all horizontal faces of the classic tGAP structure. Recipes were
given how to obtain data for the smooth tGAP structure: performing generalization operations
in such a way that the output given gradually changes the boundaries between the features
being generalized. The smooth tGAP structure delivers true vario-scale data and can be used
for smooth zoom. It is one integrated scale-space partition, and when using non-horizontal
slices the resulting 2D maps will be a valid, mixed-scale planar partition: this is useful for use
in 3D computer graphics. Furthermore, we illustrated that the smooth tGAP is equally
applicable to higher dimensional objects (i.e. integration of 3D space and scale leading to a
4D hypercube).

6.2 Open Research questions

Although the smooth tGAP structure is a breaktrough vario-scale data structure supporting
smooth zoom, there is still a myriad of open research questions:
– Engineering: how to encode the space-scale (hyper) cube in an efficient manner? Also

create metrics and collect statistics: how many nodes, edges, faces, and volumes in the
space-scale cube (and which primitives and references explicitly stored, c.f. van
Oosterom et al., 2002; Meijers et al., 2009). An important decision is to encode the SSC
with or without a topology structure. As the SSC is a full partition of the space-scale
cube, it seems attractive to use a topology encoding because this allows efficient
navigation through the data, avoid redundancy (double storage), guarantees consistent
data (no gaps or overlaps), and fits very well to the tGAP structure.

– Formalize the structure and proof that all claims can indeed be backed by sound
mathematical proofs instead of the more intuitive proofs as presented in the current paper.
To be based on Meijers and van Oosterom (2011) and Thompson and van Oosterom
(2012).

– Implementation of the smooth tGAP structure takes two main steps: 1. build classic tGAP
and 2. transform from classic to smooth tGAP (space-scale cube). The smooth tGAP has
the same building challenge as the classic tGAP with respect to applying the right
sequence of generalization operators (remove or merge, collapse or split, simplify) to
obtain cartographic quality. This has to be well tuned, otherwise the maps will be of (too)
low cartographic quality despite the fact that they are perfect in topological sense and
100% consistent between scales. One option for this might be the constrained tGAP
(Haunert et al., 2009). It is also clear that this requires 'understanding' (semantics) of the
different types of object classes involved (and the map needs of the end-users).

– Testing with larger real world data sets and appropriate graphical user interfaces
supporting smooth zoom visualization, mixed-scale visualization and observing end-user
behaviour (this is a typical Human Computer Interaction study). Probably different
devices/platforms (desktop, mobile) have to be tested and users have to be given a range
of relevant tasks. Large datasets result in large cubes, a slice near the bottom will contain

a lot of data (takes time) and is not what a user wants. So slicing, as explained in Section
3.2, should be combined with other (spatial) selection criteria; e.g. the bounding box
(bbox). The bbox is most likely smaller at the bottom and larger near the top for 'sane'
applications. For non-horizontal slices the lower edges of the bbox should be shorter than
the higher edges of the bbox. This can be compared to the use of frustums in 3D
computer graphics for perspective views.

– Despite the fact that the proposed solution results in a true vario-scale structure, it has
still an (old) tGAP drawback and that is the 1 by 1 sequencing of all generalization
operations. This might give a suboptimal smooth-zoom effect – more experiments with
end users are needed to verify whether this is indeed suboptimal. A solution for the 1 by 1
sequencing is not implementing the steps in the structure in a sequential manner, but to
group them and then let all members in the group transform in parallel. In van Oosterom
and Meijers (2011b) some possible strategies to realize more parallel actions in the tGAP
creation were proposed. These need further exploration.

– The smooth tGAP structure is mainly a DLM (digital landscape model) based
representation, which is supporting application of cartographic styling at last moment
before display (Stoter et al., 2010). Due to the specific nature of the smooth tGAP, the
cartographic styling requires additional attention. For example: when a road is an area on
the largest scale and in the tGAP structure the road area is collapsed to a road centerline
via completely smooth transition, then in the visualization a shock might appear if the
road area is displayed by a colouring the area (which becomes infinitely thin before it is
represented by a line. The line is also infinitely thin, but displayed with line-symbology,
to make it visible. One possible approach to avoid this to display 'shock', is not simply
colouring the road area, but also provide the proper casing of this area, which might even
be of the same colour.

– Another important aspect of maps is including labels in the presentation. In a similar
manner as a 'delta scale, delta map' rule applies to the geographic features, the same
applies to the labels. During zooming (and panning) the users should not be confronted
with shocks in the label display. In Been et al. (2010) this is called the 'Dynamic Map
Labeling' problem and the paper also applies the paradigm that scale is considered as
additional dimension (as in our smooth tGAP represented by the SSC). We want to
further explore how their smooth label approach fits in our SSC. Note that this might mix
DLM and DCM (digital cartographic model) related concepts inside the structure.

– In this paper it was assumed that the most detailed representation is defined by linear
primitives: boundaries in 2D maps are straight line segments (and in 3D models planar
faces). However, in existing large scale maps also non-linear primitives are used; e.g. in
the Netherlands circular arcs are used a lot in 2D large scale topographic maps. Similarly,
one might expect that in 3D models also non-linear surfaces are used to represent the
boundaries of 3D volume objects; e.g. cylinder or sphere patches. One could also imagine
the use of NURBS to represent the shape of curved surfaces (Pu and Zlatanova, 2006);
e.g. a civil engineer designs a dike or embankment (in Dutch: 'talud') with NURBS. In
theory also these non-linear primitives can be used in the smooth tGAP structure.
However, how to apply these in practice, both when creating and using the structure,
results in several engineering challenges.

– Make the structure dynamic: currently the tGAP structure (including the new smooth
tGAP) is a static structure. When an update takes place, the structure has to be
recomputed. Due to global optimization criteria, the impact of a local change is not
guaranteed to have a local effect; e.g. limited to path in structure from changed object to
root of structure, perhaps including sibling. Making the structure dynamic can result in a
5D hypercube (van Oosterom and Stoter, 2010) with an additional temporal dimension.

Again slicing issues arise when we want to create visualizations: slice from 5D to 4D
with hyperplane (e.g. select a specific moment in time or alternatively select a specific
scale).

ACKNOWLEDGEMENTS

This research is supported in part by the Dutch Technology Foundation STW (project
numbers 11300 and 11185), which is part of the Netherlands Organisation for Scientific
Research (NWO) and partly funded by the Ministry of Economic Affairs, Agriculture and
Innovation. The authors would like to thank Dirk de Jong, European Patent Attorney at
Vereenigde, for the inspiring questions and discussions during the process of writing the
patent claim for the method and system description of true vario-scale maps (patent pending
nr. OCNL 2006630).

REFERENCES

 Baars, M., Stoter, J., van Oosterom, P., and Verbree, E. (2004). Rule-Based or Explicit Storage of
Topology Structure: a Comparison Case Study. In Toppen, F. and Prastacos, P., editors,
Proceedings of the 7th Conference on Geographic Information Science (CD-ROM), pages 765–
769. Heraclion: Crete University Press.

 Been, K., Nöllenburg, M., Poon, S.-H., and Wolff, A. (2010). Optimizing active ranges for
consistent dynamic map labeling. Computational Geometry, 43(3):312–328. Special Issue on 24th
Annual Symposium on Computational Geometry (SoCG'08).

 Hägerstrand, T. (1970). What about people in regional science? Papers in Regional Science,
24(1):6–21.

 Hampe, M., Sester, M., and Harrie, L. (2004). Multiple representation databases to support
visualization on mobile devices. In Proceedings of the XXth ISPRS Congress, volume XXXV of
International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
pages 135–140, Istanbul, Turkey.

 Harrie, L., Sarjakoski, L. T., and Lehto, L. (2002). A variable-scale map for small-display
cartography. International Archives of Photogrammetry Remote Sensing and Spatial Information
Sciences, 34(4):237–242.

 Haunert, J.-H., Dilo, A., and van Oosterom, P. (2009). Constrained set-up of the tGAP structure
for progressive vector data transfer. Computers & Geosciences, 35(11):2191–2203. Progressive
Transmission of Spatial Datasets in the Web Environment.

 Louwsma, J., Tijssen, T., and van Oosterom, P. (2003). Topology under the microscope.
GeoConnexion.

 Meijers, M. (2011). Simultaneous & topologically-safe line simplification for a variable-scale
planar partition. In Geertman, S., Reinhardt,W., and Toppen, F., editors, Advancing
Geoinformation Science for a Changing World, Lecture Notes in Geoinformation and
Cartography, pages 337–358. Springer Berlin Heidelberg.

 Meijers, M. and van Oosterom, P. (2011). The space-scale cube: An integrated model for 2D
polygonal areas and scale. In 28th Urban Data Management Symposium, volume 38 of
International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
pages 95–102.

 Meijers, M., van Oosterom, P., and Quak, W. (2009). A storage and transfer efficient data
structure for variable scale vector data. In Advances in GIScience, Lecture Notes in
Geoinformation and Cartography, pages 345–367. Springer Berlin Heidelberg.

 Noguera, J. M., Segura, R. J., Ogáyar, C. J., and Joan-Arinyo, R. (2010). Navigating large ter rains
using commodity mobile devices. Computers & Geosciences, vol. 37, issue 9, pages 1218–1233.

 Nöllenburg, M., Merrick, D., Wolff, A., and Benkert, M. (2008). Morphing polylines: A step
towards continuous generalization. Computers, Environment and Urban Systems, 32(4):248–260.
Geographical Information Science Research - United Kingdom.

 Penninga, F. (2004). Oracle 10g Topology; Testing Oracle 10g Topology using cadastral data.
Technical report, Delft University of Technology, Delft.

 Pu, S. and Zlatanova, S. (2006). Integration of GIS and CAD at DBMS level. In Fendel, E. and
Rumor, M., editors, Proceedings of UDMS'06 Aalborg, pages 9.61–9.71.

 Sester, M. and Brenner, C. (2005). Continuous generalization for visualization on small mobile
devices. In Fisher, P., editor, Developments in Spatial Data Handling, pages 355–368. Springer-
Verlag.

 Stoter, J., Meijers, M., van Oosterom, P., Grünreich, D., and Kraak, M.-J. (2010). Applying DLM
and DCM concepts in a multiscale data environment. In Buttenfield, B., Brewer, C., Clarke, K.,
Finn, M., and Usery, L., editors, Proceedings of GDI 2010: Symposium on Generalization and
Data Integration, pages 1–7, Boulder, USA. University of Colorado.

 Thompson, R. M. and van Oosterom, P. (2012). Modelling and validation of 3D cadastral objects.
In Zlatanova, S., Ledoux, H., Fendel, E., and Rumor, M., editors, Urban and Regional Data
Management - UDMS Annual 2011, pages 7–23, Leiden. CRC Press.

 van Kreveld, M. (2001). Smooth generalization for continuous zooming. In Proceedings 20th
International Cartographic Conference (ICC'01), pages 2180–2185, Beijing, China.

 van Oosterom, P. (2005). Variable-scale topological data structures suitable for progressive data
transfer: The GAP-face tree and GAP-edge forest. Cartography and Geographic Information
Science, 32:331–346.

 van Oosterom, P. and Meijers, M. (2011a). Method and system for generating maps in an n-
dimensional space. Dutch patent application 2006630, filed April 19, 2011, expected to be
published October 2012.

 van Oosterom, P. and Meijers, M. (2011b). Towards a true vario-scale structure supporting
smooth-zoom. In Proceedings of 14th ICA/ISPRS Workshop on Generalisation and Multiple
Representation, pages 1–19, Paris.

 van Oosterom, P. and Stoter, J. (2010). 5D data modelling: full integration of 2D/3D space, time
and scale dimensions. In Proceedings of the 6th international conference on Geographic
information science, GIScience'10, pages 310–324, Berlin, Heidelberg. Springer-Verlag.

 van Oosterom, P., Stoter, J., Quak, W., and Zlatanova, S. (2002). The balance between geo- metry
and topology. In Richardson, D. and van Oosterom, P., editors, Advances in Spatial Data
Handling, 10th International Symposium on Spatial Data Handling, pages 121–135, Berlin.
Springer-Verlag.

 Vermeij, M., van Oosterom, P., Quak, W., and Tijssen, T. (2003). Storing and using scale-less
topological data efficiently in a client-server dbms environment. In GeoComputation 2003,
University of Southampton, Southampton, UK.

	INTRODUCTION
	THE SMOOTH tGAP STRUCTURE

