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Foreword

These notes are the result of combining two graduate courses, Geometric Geodesy and Geodetic
Astronomy, taught for many years at Ohio State University to students pursuing the Master of
Science degreein Geodesy. Over the last decade parts of these two courses have become irrelevant,
anachronistic, and in need of revision. The new course, now called Geometric Reference Systems,
combines the geometrical aspects of terrestrial and celestial reference systems with an emphasis on
modern realizations of these geodetic coordinate systems. The adjective, geometric, implies that no
attempt is made to introduce the Earth’s gravity field, which historically (more so than today)
formed such an integral part of geodetic control. Of course, the gravity field still holds a prominent
placein geodesy and it is covered in other courses. But with the advent of the Global Positioning
System (GPYS), it arguably has a diminished role to play in establishing and realizing our reference
systems. For this reason, also, the vertical datum is covered only perfunctorily, since a thorough
understanding (especially with respect to transformations between vertical datums) can only be
achieved with a solid background in geopotential modeling.

These notes duplicate and rely heavily on corresponding texts of the previous courses, notably R.H.
Rapp’s lecture notes and P.K. Seidelmann’s supplement to the Astronomical Almanac. The
present exposition is largely self-contained, however, and the reader need only refer to these and
other texts in a few instances to obtain an extended discussion. The new reference system
conventions recently (2003) adopted by the International Astronomical Union (IAU) and the
International Earth Rotation and Reference Systems Service (IERS) have been added, but are treated
like a supplement to a classic presentation of the transformation between the celestial and terrestrial
systems.

Problems are included to help the reader get involved in the derivations of the mathematics of
reference systems and to illustrate, in some cases, the numerical aspects of the topics.

Geometric Reference Systems i Jekeli, December 2006






Table of Contents

Foreword

1 Introduction

1.1 Preliminary Mathematical Relations
1.2 Reference Systems and Frames

13 The Earth’ s Shape

1.4 Problems

2. Coordinate Systems in Geodesy

21 The Ellipsoid and Geodetic Coordinates

211 Basic Ellipsoidal Geometry

2111 Problems

212 Ellipsoidal Coordinates

2121 Problems

213 Elementary Differentia Geodesy

2131 Radii of Curvature

2.1.32 Normal Section Azimuth

2.1.3.3 Geodesics

2134 Problems

214 Direct / Inverse Problem

2141 Problems

215 Transformation Between Geodetic and Cartesian Coordinates
2151 Problems

2.2 Astronomic Coordinates

221 Problems

222 Loca Terrestria Coordinates

2221 Problems

2.2.3 Differences Between Geodetic and Astronomic Coordinates
2231 Problems

2.3 Celestial Coordinates

231 Horizon System

232 Equatorial, Right Ascension System

233 Equatorial, Hour Angle System

234 Coordinate Transformations

235 Determination of Astronomic Coordinates and Azimuth
2.3.6 Problems

Geometric Reference Systems i

1-1
1-2
1-4
1-5
1-8

2-1
2-1
2-2
2-7
2-8
2-13
2-14
2-14
2-23
2-25
2-32

2-40
2-41
2-45
2-46
2-48
2-49
2-55
2-57
2-62
2.63
2-63

2-66
2-67
2-69
2-72

Jekeli, December 2006



3. Terrestrial Reference System

31 Horizontal Geodetic Datum

311 Examples of Horizontal Geodetic Datums
3.1.2 Problems

3.2 Geodetic Control in North America (and the U.S.)
3.3 International Terrestrial Reference System
34 Transformations

34.1 Transformation to and Realizations of NAD83
3.4.2 Problems

35 Vertica Datums

4, Celedtiad Reference System

4.1 Dynamics of the Pole and Equinox

411 Precession

41.2 Nutation

413 New Conventions

414 Problems

4.2 Observationa Systematic Effects

4.2.1 Proper Motion

422 Aberration

423 Parallax

424 Refraction

425 Problems

4.3 Relationship to the Terrestrial Frame
431 Polar Motion

431.1 New Conventions

43.1.2 Problems

4.3.2 Celestid Ephemeris Pole

4321 Cdedtid Intermediate Pole

433 Transformations

4331 Apparent Place Algorithm

4.3.3.2 Topocentric Place Algorithm
4.3.3.3 Problems

5. Time

5.1 Siderea Time

52 Universal Time

521 Earth Rotation Angle

5.3 Dynamic Time

5.4 Atomic Time

541 Determination of Atomic Time
Bibliography

Geometric Reference Systems v

31

3-3

3-8
3-10
3-11
3-13
3-16
3-21
3-25
3-26

4-1
4-3
4-5

4-14

4-18

4-27

4-28

4-28

4-30

4-36

4-38

4-43

4-44

4-44

4-49

4-52

4-53

4-57

4-58

4-59

4-64

4-66

51
5-2
5-9
5-12
5-13
5-17

B-1

Jekeli, December 2006



Chapter 1
| ntroduction

Geodesy is the science of the measurement and mapping of the Earth’s surface, and being
essentially an application of mathematics it makes use of coordinates and associated reference
systems. The object of this course is to study the various local, regional, and global reference
systemsthat are in use to describe coordinates of points on the Earth’ s surface or in near space and
to relate them to each other as well as to some "absolute” frame, visually, acelestial frame. Asthe
name of the course implies, we deal mostly with the geometry of these systems, although the
physics of the Earth plays a very important part. However, the relevant geophysics is discussed
more comprehensively in other courses on gravimetric geodesy and geodynamics. Also, we do not
treat the mapping of points and their coordinates onto the plane, that is, map projections. The
purpose is mainly to explore the geometric definition of reference systems and their practical
redlization.

To establish coordinates of points requires that we set up a coordinate system with origin,
orientation, and scale defined in such away that all users have accessto these. Only until recently,
the most accessible reference for coordinates from a global perspective was the celestial sphere of
stars, that were used primarily for charting and navigation, but also served as afundamental system
to which other terrestrial coordinate systems could be oriented. Still today, the celestial reference
system is used for that purpose and may be thought of as the ultimate in reference systems. At the
next level, we define coordinate systems attached to the Earth with various origins (and perhaps
different orientations and scale). We thus have two fundamental tasks before us:

1) to establish an external ("inertial™) coordinate system of our local universe that we
assume remains fixed in the sense of no rotation; and

2) to establish a coordinate system attached to our rotating and orbiting Earth, and in so
doing to find the relationship between these two systems.
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In fact, we will develop the terrestrial coordinate system before discussing the celestial system,
sincethe latter isamost trivial by comparison and the important aspects concern the transformation
between the systems.

1.1 Preiminary Mathematical Relations

Clearly, spherical coordinates and spherical trigonometry are essential tools for the mathematical
manipulations of coordinates of objects on the celestial sphere. Similarly, for global terrestrial
coordinates, the early map makers used spherical coordinates, although, today, we rarely use these
for terrestrial systems except with justified approximations. It is useful to review the polar
spherical coordinates, according to Figure 1.1, where @ isthe co-latitude (angle from the pole), A
isthe longitude (angle from the x-axis), and r isradial distance of apoint. Sometimes the latitude,
@, isused ingtead of the co-latitude, 8, — but we reserve ¢ for the "geodetic latitude" (Figure 2.5)
and use  instead to mean "geocentric" latitude.

z

Figure 1.1: Spherical polar coordinates.
On aunit sphere, the “length” (in radians) of agreat circle arc is equal to the angle subtended

at the center (see Figure 1.2). For a spherical triangle, we have the following useful identities
(Figure 1.2):
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sna _sinb _sinc .

law of sines: ' == — :
sna snpf sny

(1.1)

law of cosines. cosc=cosacosb+sinasnbcosy . (1.2

If we rotate a set of coordinate axes about any axis through the origin, the Cartesian coordinates of
a given point change as reckoned in the rotated set. The coordinates change according to an
orthogonal transformation, known as arotation, defined by a matrix, e.g., R(a) :

X X
y| =R@|y| (1.3)
z new Z old

where a isthe angle of rotation (positive if counterclockwise as viewed along the axis toward the
origin).

Figure 1.2: Spherica triangle on a unit sphere.
Specifically (see Figure 1.3), arotation about the x -axis (1-axis) by the angle, a , isrepresented by
1 0 0

R4(a) = 0 «cosa sna |; (1.9
0O -sna cosa

arotation about the y -axis (2-axis) by the angle, 3, is represented by
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cosB 0 -snp
RA(B=| O 1 0 ; (1.5
sng 0 cosp

and arotation about the z-axis (3-axis) by the angle, y, isrepresented by
cosy sny O

Ra(y)=| —sinycosy O ; (1.6)
0 0 1

where the property of orthogonality yields
R'=R. (1.7)

The rotations may be applied in sequence and the total rotation thus achieved will always result in
an orthogonal transformation. However, the rotations are not commutative.

z

D,

X

Figure 1.3: Rotations about coordinate axes.

1.2 Reference Systems and Frames

It is important to understand the difference between a reference system for coordinates and a
reference frame since these concepts apply throughout the discussion of coordinate systems in
geodesy. According to the International Earth Rotation and Reference Systems Service (IERS, see
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Section 3.3):

A Reference System is a set of prescriptions and conventions together with the
modeling required to define at any time atriad of coordinate axes.

A Reference Frame realizes the system by means of coordinates of definite points that
are accessible directly by occupation or by observation.

A simple example of areference system is the set of three axes that are aligned with the Earth’s
spin axis, a prime (Greenwich) meridian, and a third direction orthogonal to thesetwo. That is, a
system defines how the axes are to be established, what theories or models are to be used (e.g., what
we mean by a spin axis), and what conventions are to be used (e.g., how the x-axisisto be chosen
— where the Greenwich meridian is). A simple example of a frame is a set of points globally
distributed whose coordinates are given numbers (mutually consistent) in the reference system.
That is, aframe is the physical realization of the system defined by actual coordinate values of
actual pointsin space that are accessible to anyone. A frame cannot exist without a system, and a
system is of no practical value without aframe. The explicit difference between frame and system
was articulated fairly recently in geodesy (see, e.qg., Moritz and Mueller, 1987, Ch.9)1, but the
concepts have been embodied in the terminology of a geodetic datum that can be traced to the
eighteenth century and earlier (Torge, 19912; Rapp, 19923). We will explain the meaning of a
datum within the context of frames and systems later in Chapter 3.

1.3 The Earth’s Shape

The Figure of the Earth is defined to be the physical (and mathematical, to the extent it can be
formulated) surface of the Earth. Itisrealized by a set of (control) points whose coordinates are
determined in some well defined coordinate system. The realization applies traditionally to land
areas, but is extended today to include the ocean surface and ocean floor with appropriate
definitions for their realizations. The first approximation to the figure of the Earth is a sphere; and
the coordinates to be used would naturally be the spherical coordinates, as defined above. Evenin
antiquity it was recognized that the Earth must be (more or less) spherical in shape. Thefirst actua
numerical determination of the size of the Earth is credited to the Greek scholar Eratosthenes (276 —
195 B.C.) who noted that when the sun is directly overhead in Syene (today’ s Assuan) it makes an
angle, according to his measurement, of 7° 12" in Alexandria. Further measuring the arc length
between the two cities, he used smple geometry (Figure 1.4):

1 Moritz, H. and 1.1. Mueller (1987): Earth Rotation, Theory and Observation, Ungar Publ. Co., New Y ork
2 Torge, W. (1991): Geodesy. W. deGruyter, Berlin.

3 Rapp, R.H. (1992): Geometric Geodesy, Part 1. Lecture Notes; Department of Geodetic Science and Surveying,
Ohio State University.
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(18)

to arrive at aradius of R= 6267 km, which differs from the actual mean Earth radius by only 104
km (1.6%).

Figure 1.4: Eratosthenes’ determination of Earth’s radius.

A few other determinations were made, but not until the middle of the Renaissance in Europe
(16th century) did the question serioudly arise regarding improvements in determining Earth’s size.
Using very similar, but more elaborate procedures, several astronomers and scientists made various
determinations with not always better results. Finally by the time of 1saac Newton (1643 — 1727)
the question of the departure from the spherical shape was debated. Various arc measurementsin
the 17th and 18th centuries, as well as Newton’s (and others’) arguments based on physical
principles, gave convincing proof that the Earth is ellipsoidal in shape, flattened at the poles, with
approximate rotational symmetry about the polar axis.

The next best approximation to the figure of the Earth, after the ellipsoid, is known as the
geoid, the equipotential surface of the Earth’s gravity field (that is, the surface on which the gravity
potential is a constant value) that closely approximates mean sea level. While the mean Earth
sphere deviates radially by up to 14 km (at the poles) from a mean Earth ellipsoid (a surface
generated by rotating an ellipse about its minor axis; see Chapter 2), the difference between the
ellipsoid and the geoid amounts to no more than 110 m, and in a root-mean-square sense by only
30 m. Thus, at least over the oceans (over 70% of Earth’s surface), the ellipsoid is an extremely
good approximation (5 parts per million) to the figure of the Earth. Although thisis not sufficient
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accuracy for geodesists, it serves as a good starting point for many applications; it is aso the
mapping surface for most national and international control surveys. Therefore, we will study the
geometry of the elipsoid in some detail in the next chapter.
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1.4 Problems

1. Write both the forward and the reverse relationshi ps between Cartesian coordinates, (x,y,z) , and
spherical polar coordinates, (r,6,A) .

2. Write the law of cosines for the spherical triangle, analogous to (1.2), when the left side is
cosb. Also, writethe law of cosinesfor the triangle angles, instead of the triangle sides (consult a
book on spherical trigonometry).

3. Show that for small rotations about the x -, y -, and z-axes, by corresponding small angles, a,
[, and y, the following approximation holds:

1 yv-B
RiWRx(DRy(a)=| -y 1 a |; (1.9)
B —-al

and that thisis independent of the order of the rotation matrices.

4. Determine the magnitude of the angles that is allowed so that the approximation (1.9) does not
cause errors greater than 1 mm when applied to terrestrial coordinates (use the mean Earth radius,
R=6371km).

5. Research the length of a “stadium”, as mentioned in (Rapp, 1991, p.2)4, that was used by
Eratosthenes to measure the distance between Syene and Alexandria. How do different definitions
of thisunit in relation to the meter change the value of the Earth radius determined by Eratosthenes.

4 Rapp, R.H. (1991): Geometric geodesy, Part I. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University.
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Chapter 2
Coordinate Systems in Geodesy

Coordinates in geodesy traditionally have conformed to the Earth’ s shape, being spherical or atype
of ellipsoidal coordinates for regional and global applications, and Cartesian for local applications
where planar geometry suffices. Nowadays, with satellites providing essential reference systems
for coordinates, the Cartesian type is as important and useful for global geospatial referencing.
Because the latitude/longitude concept will always have the most direct appeal for terrestrial
applications (surveying, near-surface navigation, positioning and mapping), we consider in detail the
coordinates associated with an ellipsoid. In addition, since astronomic observations still help define
and realize our reference systems, both natural (astronomic) and celestial coordinates are covered.
Local coordinates are based on the local vertical and deserve special attention not only with respect
to the definition of the vertical but in regard to their connection to global coordinates. In all cases
the coordinate systems are orthogonal, meaning that surfaces of constant coordinates intersect
always at right angles. Some Cartesian coordinate systems, however, are left-handed, rather than the
usua right-handed, and this will require extra (but not burdensome) care.

2.1 TheEllipsoid and Geodetic Coordinates

We treat the ellipsoid, its geometry, associated coordinates of points on or above (below) it, and
geodetic problems of positioning and establishing networks in an elementary way. The motivation
is to give the reader a more practical appreciation and utilitarian approach rather than a purely
mathematical treatise of ellipsoidal geometry (especiadly differential geometry), although the reader
maly argue that even the present text is rather mathematical, which, of course, cannot be avoided; and
no apologies are made.

Geometric Reference Systems 2-1 Jekeli, December 2006



211 Basic Ellipsoidal Geometry

It is assumed that the reader is familiar at least with the basic shape of an ellipse (Figure 2.1). The
ellipsoid is formed by rotating an ellipse about its minor axis, which for present purposes we
assume to be paralel to the Earth’s spin axis. This creates a surface of revolution that is symmetric
with respect to the polar axis and the equator. Because of this symmetry, we often depict the
ellipsoid as simply an ellipse (Figure 2.1). The basic geometric construction of an ellipse is as
follows: for any two points, F; and F,, called focal points, the ellipseis the locus (path) of points,
P, such that the sum of the distances PF, + PF, isaconstant.

Figure 2.1: The ellipsoid represented as an ellipse.
Introducing a coordinate system (x,2) with origin halfway on the line F;F, and z-axis
perpendicular to F;F, , we seethat if P is on the x -axis, then that constant is equal to twice the
distance from P to the origin; thisisthe length of the semi-major axis; call it a:

PF, + PF,=2a (21)

Moving the point, P, to the z-axis, and letting the distance from the origin point to either focal
point (F, or F,) be E, weaso find that

E=+va?-b?, (2.2)

where b is the length of the semi-minor axis. E iscalled the linear eccentricity of the ellipse
(and of the éllipsoid). From these geometrical considerationsit is easy to prove (left to the reader),
that the equation of the ellipse is given by
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X2 22
+ =

-1 (2.3)
a® b

An adternative geometric construction of the éllipse is shown in Figure 2.2, where points on the
ellipse are the intersections of the projections, perpendicular to the axes, of points sharing the same
radiusto concentric circleswithradii a and b, respectively,. The proof isasfollows:

Let x, z, s be distances as shown in Figure 2.2. Now

2 2
AOCB~AODA 0O Z2=2 p Z2:=S_.
b~ a b2 a2
2 2 2 2 2
but x2+52:a2;hence 0:2—2—%:)(—2 22—1 QED.
b a a~ b
VA

Figure 2.2: Ellipse construction.
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We see that the ellipse, and hence the ellipsoid, is defined by two essential parameters. a shape
parameter and a size (or scale) parameter (unlike the circle or sphere that requires only one
parameter, the radius which specifiesits size). In addition to the semi-major axis, a, that usually
serves as the size parameter, any one of a number of shape parameters could be used. We have
already encountered one of these, the linear eccentricity, E. The following are also used; in
particular, the flattening:

f=272 (2.4)

thefirst eccentricity:

2 2
e= Vaa_b : (2.5)

and, the second eccentricity:

2 2
e= Vab_b . (2.6)

Note that the shape parameters (2.4), (2.5),and (2.6) are unitless, while the linear eccentricity, (2.2)
has units of distance. We also have the following useful relationships among these parameters
(which are | eft to the reader to derive):

e?=2f—f2 2.7)
E=ae, (2.8)
e.2 e2
e2=1+e.2 , €?= et (1-€?)(1+e?)=1, (2.9)
2
g2= Zf_fz . (2.10)
(1-1)

When specifying a particular ellipsoid, we will, in general, denote it by the pair of parameters,
(af) . Many different ellipsoids have been defined in the past. The current internationally adopted
mean Earth ellipsoid is part of the Geodetic Reference System of 1980 (GRS80) and has parameter
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valuesgiven by
a=6378137m

f=1/298.257222101

(2.11)

From (Rapp, 1991, p.169)1, we have the following table of ellipsoids defined in modern geodetic

history.

Table 2.1: Terrestrial Ellipsoids.

Ellipsoid Name (year computed)

Semi-Magjor Axis, a, [m]

Inverse Flattening, 1/f

Airy (1830) 6377563.396 299.324964
Everest (1830) 6377276.345 300.8017
Bessel (1841) 6377397.155 299.152813
Clarke (1866) 6378206.4 294.978698
Clarke (1880) 6378249.145 293.465
Modified Clarke (1880) 6378249.145 293.4663
International (1924) 6378388. 297.
Krassovski (1940) 6378245. 298.3

Mercury (1960) 6378166. 298.3
Geodetic Reference System (1967), GRS67 | 6378160. 298.2471674273
Modified Mercury (1968) 6378150. 298.3
Australian National 6378160. 298.25

South American (1969) 6378160. 298.25

World Geodetic System (1966), WGS66 6378145. 298.25

World Geodetic System (1972), WGS72 6378135. 298.26
Geodetic Reference System (1980), GRS80 | 6378137. 208.257222101
World Geodetic System (1984), WGS84 6378137. 298.257223563
TOPEX/Poseidon (1992) (IERS recom.)2 6378136.3 298.257

1 Rapp, R.H. (1991): Geometric geodesy, Part I. Lecture Notes; Department of Geodetic Science and Surveying,

Ohio State University.

2 McCarthy, D.D. (ed.) (1992): IERS Standards. |ERS Technical Note 13, Observatoire de Paris, Paris.
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The current (2001)3 best-fitting ellipsoid has ellipsoid parameters given by

a=63781365+0.1m
(2.118)
1/f = 298.25642 + 0.00001

Note that these values do not define an adopted ellipsoid; they include standard deviations and
merely give the best determinable values based on current technology. On the other hand, certain
specialized observing systems, like the TOPEX satellite altimetry system, have adopted ellipsoids
that differ from the standard ones like GRS80 or WGS84. It is, therefore, extremely important that
the user of any system of coordinates or measurements understands what elipsoid isimplied.

3 Torge, W. (2001): Geodesy, 3rd edition. W. deGruyter, Berlin.
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2.1.1.1 Problems

1. From the geometrical construction described prior to equation (2.3), derive the equation for an
elipse, (2.3). [Hint: For apoint on the elipse, show that

\/(x+ E)2+z2 +\/(x—E)2+z2 =2a .

Square both side and show that

2a2—x2—E2—22=\/(x+ E)2+z2 \/(X—E)2+22 .

Finally, square both sides again and reduce the result to find (2.3).]
What would the equation be if the center of the ellipse were not at the origin of the coordinate
system?

2. Derive equations (2.7) through (2.10).

3. Consider the determination of the parameters of an ellipsoid, including the coordinates of its
center, with respect to the Earth. Suppose it is desired to find the ellipsoid that best fits through a
given number of points at mean sealevel. Assume that the orientation of the ellipsoid is fixed a
priori so that its axes are parallel to the global, geocentric coordinate frame attached to the Earth.

a What is the minimum number of points with known (x,y,z) coordinates that are needed to
determine the ellipsoid and its center coordinates? Justify your answer.

b) Describe cases where the geometry of a given set of pointswould not alow determination
of 1) theflattening, 2) the size of the dlipsoid.

¢) What distribution of points would give the strongest solution? Provide a sufficient
discussion to support your answer.

d) Set up the linearized observation equations and the normal equations for a least-squares
adjustment of the ellipsoidal parameters (including its center coordinates).
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212 Ellipsoidal Coordinates

In order to define practical coordinates of points in relation to the ellipsoid, we consider the
ellipsoid with conventiona (x,y,zZ) axes whose origin is at the center of the ellipsoid. We first
define the meridian plane for a point as the plane that contains the point as well as the minor axis
of the ellipsoid. For any particular point, P, in space, its longitude is given by the angle in the
equatorial plane from the x -axis to the meridian plane. This is the same as in the case of the
spherical coordinates (due to the rotational symmetry); see Figure 1.1. For the latitude, we have a
choice. The geocentric latitude of P isthe angle, ¢, at the origin and in the meridian plane from
the equator to theradial linethrough P (Figure 2.3). Note, however, that the geocentric latitudeis
independent of any defined ellipsoid and isidentical to the complement of the polar angle defined
earlier for the spherical coordinates.

Consider the ellipsoid through P that is concentric with the ellipsoid, (a,f ), and has the same
linear eccentricity, E; its semi-minor axisis u (Figure 2.4), which can aso be considered a
coordinate of P. We define the reduced latitude, 3, of P as the angle at the origin and in the
meridian plane from the equator to the radial line that intersects the projection of P, along the
perpendicular to the equator, at the sphere of radius, v=+/ E2 + u? |

Finally, we introduce the most common latitude used in geodesy, appropriately called the
geodetic latitude. Thisisthe angle, ¢, in the meridian plane from the equator to the line through
P that is also perpendicular to the basic ellipsoid (a,f ) ; see Figure 2.5. The perpendicular to the
ellipsoid is also called the normal to the ellipsoid. Both the reduced latitude and the geodetic
| atitude depend on the underlying ellipsoid, (af | .

z

a

Figure 2.3: Geocentric latitude.
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sphere (radius =)

= elipsoid (v, 1- (1 - EZVA)Y2)

b ellipsoid (a,f)

Vv

Figure 2.4: Reduced latitude. Ellipsoid (a,f) and the éllipsoid through P have the same E.

z

a

Figure 2.5: Geodetic latitude.

In order to find the relationship between these various latitudes, we determine the (x,z)
coordinates of P in terms of each type of latitude. It turns out that this relationship is
straightforward only when P is on the ellipsoid; but for later purposes, we derive the Cartesian
coordinates in terms of the latitudes for arbitrary points. For the geocentric latitude, ¢/, simple
trigonometry gives (Figure 2.3):

X=rcosy, z=rsny . (2.12)

Substituting (2.12) into equation (2.3), now specialized to the elipsoid through P, we find that the
radia distance can be obtained from:

rz(uzcosz(,l/+ vzsinz(,l/) =u?v? | (2.13)

Noting that
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2
u2coszt/1+ vzsinzw:uz(l+Ezsin2L//) , (2.14)

u
we obtain
r= V2 , (2.15)
1+ E—Z sinzw
u

and, consequently, using (2.12):

V COS vsin
X= id , z= id . (2.16)
= 2 E? 2
1+—23|n (1)) 1+—23|n 1]
u u

For the reduced latitude, simple trigonometric formulas applied in Figure 2.4 asin Figure 2.2 yield:
X=vcosB, z=usnp. (2.17)

For the geodetic latitude, consider first the point, P, on the ellipsoid, (a,f ) . From Figure 2.6,
we have the following geometric interpretation of the derivative, or dope, of the dlipse:

tan (90° — ¢) = _dgx . (2.18)

Theright side is determined from (2.3):

z2:b2(1_§ 0 22dz=—222xdx U _dszzi)z( ; (2.19)
and, when substituted into (2.18), thisyields

b*x? s n2q0= a* 22 coszqo : (2.20)
We aso have from (2.3):
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b%x?+a?z*=a%b? . (2.22)
Now, multiply (2.21) by —b? sin’p and add to (2.20), thus obtaining

7 (a2 coszq0+ b? sin2q0) =p* sinzqo , (2.22)

which reducesto

2\ .
,-all-¢’Jsng 2.23)

v 1-— ezsinzqo

a

Figure 2.6: Slope of dlipsoid.

With a similar procedure, multiplying (2.21) by a’ coszqo, adding to (2.20), and simplifying, one
obtains (the reader should verify this):

x=__2¢8¢ (2.24)

vV 1-— ezsinz(p

Tofind the (x,z) coordinates of a point above (or below) the ellipsoid, we need to introduce a
height coordinate, in this case the ellipsoidal height, h, above the ellipsoid (it is negative, if P is
below the ellipsoid); h is measured along the perpendicular (the normal) to the elipsoid (Figure
2.6). Itisasimple matter now to express (x,z) interms of geodetic latitude and ellipsoidal height:

2 .
X= aces9 +hcos g, z= a(l e)Sm(p+hsinqa. (2.25)

V 1- e?sin’p V 1- e?sin%p

It is easy to find the relationship between the different latitudes, if the point is on the ellipsoid.
Combining (2.12), (2.17), both specialized to the basic elipsoid (u=b), with (2.23) and (2.24), we
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obtain the following relationships among these three latitudes, using the ratio z/x :

2

tanw:EtanB:b—ztan(p, (2.26)
a a
which also shows that
Y<spB<o. (2.27)

Again, we note that the relationship (2.26) holds only for points on the ellipsoid. For arbitrary
points in space the problem is not straightforward and is connected with the problem of finding the
geodetic latitude from given rectangular (Cartesian) coordinates of the point (see Section 2.1.5).

The ellipsoidal height, geodetic latitude, and longitude, (h,@A), constitute the geodetic
coordinates of a point with respect to agiven elipsoid, (af ). It is noted that these are orthogonal
coordinates, in the sense that surfaces of constant h, ¢, and A are orthogonal to each other.
However, mathematically, these coordinates are not that useful, since, for example, the surface of
constant h is not a simple shape (it is not an ellipsoid). Instead, the triple of ellipsoidal
coordinates, (u,3,A), also orthogonal, is more often used for mathematical developments; but, of
course, the height coordinate (and also the reduced latitude) is less intuitive and, therefore, less
practical.
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2.1.2.1 Problems

1. Derive the following expressions for the differences between the geodetic latitude and the
geocentric, respectively, the reduced latitudes of points on the dlipsoid:

2 -
e“sin2
tn(g- )= ) (228)
2(1—e sin (0)
t __nsn2g 2.29
an((”‘ﬂ)—m : (2.29)

where n=(a—b)/(a+b) . (Hint: see Rapp, 1991, p.26.)*

2. Calculate and plot the differences (2.28) and (2.29) for all latitudes, 0 < ¢<90° using the
GRS80 dlipsoid parameter values

3. Show that the difference (¢— B) ismaximum when @= cos” Y-n).

4. Mathematically and geometrically describe the surfaces of constant u, 3, and, A, respectively.
As the linear eccentricity approaches zero, what do these ellipsoidal coordinates and surfaces
degenerate into?

4 Rapp, R.H. (1991): Geometric geodesy, Part I. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University.
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213 Elementary Differential Geodesy

In the following we derive differential elements on the surface of the ellipsoid and, in the process,
describe the curvature of the ellipsoid. The differential elements are used in developing the
geometry of geodesics on the ellipsoid and in solving the principal problemsin geometric geodesy,
namely, determining coordinates of points on geodesics.

2.1.3.1 Radii of Curvature

Consider acurve on asurface, for example ameridian arc or aparalle circle on the dlipsoid, or any
other arbitrary curve. The meridian arc and the parallel circle are examples of plane curves, curves
that are contained in a plane that intersects the surface. The amount by which the tangent to the
curve changes in direction as one moves along the curve indicates the curvature of the curve. We
define curvature geometrically asfollows:

The curvature, x, of aplane curve is the absolute rate of change of the slope angle of
the tangent line to the curve with respect to arc length along the curve.

If a isthedopeangleand s isarc length, then

X:

da
o .(2.30)

With regard to Figure 2.7a, let A be the unit tangent vector at a point on the curve; A identifiesthe
slope of the curve at that point. Consider also the plane that locally contains the infinitesimally
close neighboring tangent vectors; that is, it contains the direction in which A changes due to the
curvature of the curve. For plane curves, thisis the plane that contains the curve. The unit vector
that is in this plane and perpendicular to A, called u, identifies the direction of the principal
normal to the curve. Note that the curvature, as given in (2.30), has units of inverse-distance. The
reciprocal of the curvatureis called the radius of curvature, p:

1
== 231
p= (2:31)
Theradius of curvature is a distance aong the principal normal to the curve. Inthe specia case that
the curvature is a constant, the radius of curvature is also a constant and the curveisacircle. We
may think of the radius of curvature at a point of an arbitrary curve as being the radius of the circle

tangent to the curve at that point and having the same curvature.
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A curve on the surface may also have curvature such that it cannot be embedded in aplane. A
corkscrew is such acurve. Geodesics on the ellipsoid are geodetic examples of such curves. In
this case, the curve has double curvature, or torsion. We will consider only plane curves for the
moment.

ds
dx

M
a) b)
Figure 2.7: Curvature of plane curves.

Let z=2z(x) describe the plane curve in terms of space coordinates (x,z) . Intermsof arc length,
s, wemay write x = x(s) and z=2z(s). A differentia arc length, ds, isgiven by

ds=+/dx?+dz% . (2.32)

This can be re-written as

_ dz
ds=y / 1+ ( dx) dx . (2.33)

Now, the tangent of the dope angle of the curveis exactly the derivative of the curve, dz/dx ; hence
a= tan‘l(dz) . (2.34)

dx

Using (2.30) and (2.33), we obtain for the curvature

da da || dx
X=1ds| ™| dx || ds
_ 1 d’z 1 _
R R
so that, findlly,
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X= (2.35)

For the meridian elipse, we have from (2.18) and (2.19):

dz _ b? X _ CosQ
-2z sng’ (2.36)
and the second derivative is obtained as follows (the details are | ft to the reader):
2 2 2 2
dﬁz—bzl(ua(dz) ) . (2.37)
dx a?z|  p?lx
Making use of (2.22), (2.36), and (2.37), the curvature, (2.35), becomes
bj \/a2 cosch+ b? sinzqo a’ cosZ(p+ b? sinz(p
3 a? bzsinqo bzsinzqo
X= EREIE
1420
sin“g
(2.38)

= % (1—ezsin2(p)3/2.

Thisis the curvature of the meridian ellipseg; its reciprocal is the radius of curvature, denoted
conventionaly as M :

a(l—ez)

M=
(1—ezsin2(p)3/

S (2.39)

where (2.5) wasused. Notethat M isafunction of geodetic latitude (but not longitude, because of
the rotational symmetry of the ellipsoid). Using the expression (2.30) for the curvature, we find
that
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1

dg
ds

M

, (2.40)

since the slope angle of the éllipseis 90° — ¢ (see Figure 2.6); and, hence, since M >0 (always)
dSmerigian= M d@ (2.41)

which isthe differential element of arc along the meridian. The absolute value is removed with the
convention that if dgs 0, then dsS0.

Theradius of curvature, M, isthe principal normal to the meridian curve; and, therefore, it lies
along the normal (perpendicular) to the ellipsoid (see Figure 2.8). At the pole (¢=90°) and at the
equator (= 0°) it assumes the following values, from (2.39):

M equator = a(l - ez) <a,
(2.42)

showing that M increases monotonically from equator to either pole, whereit is maximum. Thus,
also the curvature of the meridian decreases (becomes less curved) as one moves from the equator
to the pole, which agrees with the fact that the ellipsoid is flattened at the poles. The length segment,
M, does not intersect the polar axis, except at ¢=90°. Wefind that the "lower" endpoint of the
radiusfalson acurve asindicated in Figure 2.8. Thevalues A, and A, are computed as follows

A =a-Mguoa=2a-a(l-e?)=ae’,

(2.43)
- _a —ha?
a
Using values for the ellipsoid of the Geodetic Reference System 1980, (2.11), we find
A, =42697.67m,
(2.44)

A,=42841.31m.

Geometric Reference Systems 2-17 Jekeli, December 2006



Figure 2.8: Meridian radius of curvature.

So far we have considered only the meridian curve. At any point on the ellipsoid, we may
consider any other curve that passes through that point. In particular, imagine the class of curves
that are generated as follows. At a point on the ellipsoid, let & be the unit vector defining the
direction of the normal to the surface. By the symmetry of the ellipsoid, & liesin the meridian
plane. Now consider any plane that contains &; it intersects the ellipsoid in a curve known as a
normal section ("normal" because the plane contains the normal to the ellipsoid at a point) (see
Figure2.9). The meridian curveisaspecial case of anormal section; but the parallel circleisnot a
normal section; even though it is a plane curve, the plane that contains it does not contain the
normal, &. We note that anormal section on a sphereisagreat circle. However, we will see below
that normal sections on the ellipsoid do not indicate the shortest path between points on the
ellipsoid — they are not geodesics (great circles are geodesics on the sphere).

paralel circle

normal section

Figure 2.9: Normal section (shown for the prime vertical).
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The normal section drawn in Figure 2.9, another special case, is the prime vertical normal
section — it is perpendicular to the meridian. Note that while the prime vertical normal section and
the paralld circle have the same tangent where they mest, they have different principal normals. The
principal normal of the parallel circle (its radius of curvature) is parallel to the equator, while the
principal normal of the prime vertical normal section (or any normal section) is the normal to the
ellipsoid — but at this point only!

In differential geometry, there is the following theorem due to Meusnier (e.g., McConnell,
1957)°

Theorem: For all surface curves, C, with the same tangent vector at a point, each having
curvature, X, at that point, and the principal normal of each making an angle, 6, with
the normal to the surface, thereis

Xc C0s 6 = constant . (2.45)

Xc Cos 6 is called the normal curvature of the curve C at apoint. Of all the curves that share
the same tangent at a point, one is the normal section. For this normal section, we clearly have,
6= 0, since its principal normal is also the normal to the ellipsoid at that point. Hence, the
constant in (2.45) is

constant = X, ,ormal section - (2.46)

The constant is the curvature of that normal section at the point.
For the prime vertical normal section, we define

1
X primevertical normal section = N 1 (2-47)

where N isthe radius of curvature of the prime vertical normal section at the point of the ellipsoid
normal. The parallel circle through that point has the same tangent as the prime vertical normal
section, and itsradius of curvatureis p= 1/ X aaiiel cirle - 1 n€ aNgle of its principal normal, that is,
p, with respect to the élipsoid normal isthe geodetic latitude, ¢ (Figure 2.6). Hence, from (2.45) -
(2.47):

1 1
o Cos Q= N (2.48)

5 McConnell, A.J. (1957): Applications of Tensor Analysis. Dover Publ. Inc., New Y ork.
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which implies that
p=Ncosg, (2.49)

and that N isthe length of the normal to the ellipsoid from the point on the ellipsoid to its minor
axis (see Figure 2.10).

Figure 2.10: Prime vertical radius of curvature.

The x -coordinate of a point on the ellipsoid whose y -coordinate is zero is given by (2.24); but
thisisalso p. Hence, from (2.49)

N = a (2.50)

\/ 1—ezsinzqo

From Figure 2.10 and equation (2.23), we aso find that the point of intersection of N with the
minor axisis the following distance from the ellipsoid center:

A=Nsin(p—z=Nezsinq0. (2.51)

At the equator (¢=0) and at the poles (@= £ 90° ), the prime vertical radius of curvature assumes
the following constants, according to (2.50):

a
Nyge= ——=>a
pole )
1-¢€?
(2.52)

Nequator =a;
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and we see that N increase monotonically from the equator to either pole, where it is maximum.
Notethat at the pole,

Npole = Mpole (2.53)

since all normal sections at the pole are meridians. Again, theincreasein N polewards, impliesa
decrease in curvature (due to the flattening of the ellipsoid). Finally, Neguaor=a agrees with the
fact that the equator, being the prime vertical normal section for points on the equator, isacircle
withradius, a.

Making use of the basic definition of curvature as being the absolute change in dope angle with
respect to arc length of the curve, (2.30), we find for the paral€ circle

1_|da

p— ds ; (2.54)

and, therefore, again removing the absolute value with the convention that if dAS0, then also
dsS 0, weobtan:

dsparallel cirde= N cos @dA = dSprimevertical normal section (2.35)

where the second equality holds only where the parallel circle and the prime vertical normal section
are tangent.
From (2.39) and (2.50), it iseadly verified that, always,

M<N . (2.56)

Also, a any point M and N are, respectively, the minimum and maximum radii of curvature for all
normal sections through that point. M and N are known as the principal radii of curvature at a
point of the ellipsoid. For any arbitrary curve, the differential element of arc, using (2.41) and
(2.55), isgiven by

ds= \/M2 dqo2 +N? coszqad/\2 : (2.57)

To determine the curvature of an arbitrary normal section, wefirst need to define the direction of
the normal section. The normal section azimuth, a, is the angle measured in the plane tangent to
the ellipsoid at a point, clockwise about the normal to that point, from the (northward) meridian
plane to the plane of the normal section. Euler’s formula gives us the curvature of the normal
section having normal section azimuth, «a , in terms of the principal radii of curvature:
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1 _sin‘a N cos’a

Xa= R TN M

(2.58)

We can use the radius of curvature, R, , of the normal section in azimuth, a, to define a mean
local radius of the ellipsoid. Thisis useful if locally we wish to approximate the ellipsoid by a
sphere —thislocal radius would be the radius of the approximating sphere. For example, we have
the Gaussian mean radius, which isthe average of the radii of curvature of all normal sectionsat a

point:

2
2
1 da
Rs=+=| Ryda=
© Zﬂj ’ sina  cos’a
0 +
N M
0
(2.59)
T )
=.+/MN =
1—e25in2(0

as shown in (Rapp, 19916, p.44; see also Problem 2.1.3.4.-1.). Note that the Gaussian mean
radius is a function of latitude. Another approximating radius is the mean radius of curvature,
defined from the average of the principal curvatures:

1
1(1 1)
= =
Z(N M)

For the sake of completeness, we define here other radii that approximate the elipsoid, but these
are global, not local approximations. We have the average of the semi-axes of the ellipsoid:

R, = (2.60)

R=Z(a+a+b); (2.61)

Wl

the radius of the sphere whose surface area equals that of the ellipsoid:

b3
Ra=v\/ 27 - (2.62)

6 Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio.
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where 2 isthe areaof the dlipsoid, given by (Rapp, 1991, p.42; see also Problem 2.1.3.4.-4.)

5= 2nb2(1 _162 " 21e i:) : (2.63)
and the radius of the sphere whose volume equals that of the ellipsoid:

Ry = 2\2)1/3, (2.64)
where V isthe volume of the dlipsoid, given by

V= gnazb . (2.65)
Using the values of GRS80, all of these approximationsimply

R=6371km (2.66)

as the mean Earth radius, to the nearest km.

2.1.3.2 Normal Section Azimuth

Consider again anormal section defined at a point, A, and passing through atarget point, B ; see
Figure 2.11. We note that the points n, and ng, the intersections with the minor axis of the
normalsthrough A and B, respectively, do not coincide (unless, ¢, = ¢ ). Therefore, the normal
planeat A that also contains the point B, while it contains the normal at A, does not contain the
normal a B. And, viceversal Therefore, unless ¢, = ¢, the normal sectionat A through B isnot
the same as the normal section at B through A . In addition, the normal section at A through a
different target point, B', along thenorma at B, but at height hg , will be different than the normal
section through B (Figure 2.12). Note that in Figure 2.12, ABn, and AB'n, define two different
planes containing the normal at A.

Both of these geometries (Figures 2.11 and 2.12) affect how we define the azimuth at A of the
(projection of the) target point, B. If a,g isthe normal section azimuth of B at A, and a',g is
the azimuth, at A, of the "reverse" normal section coming from B through A, then the difference
between these azimuthsis given by Rapp (1991, p.59)":

7 Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
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e2

1 - S
O~ =5 SNApg

2
S | cos? Lling S
NA> cos (pA(cos dpg=75 tan g, N (2.67)

where s is the length of the normal section. This is an approximation where higher powers of
S/N, areneglected. Furthermore, if a,g isthenormal section azimuthof B' at A, where B' is at
aheight, hg , dong the elipsoid normal at B, then Rapp (1991, p.63, ibid.) givesthe difference:

_he o2 o

Na Na

cosaAB—;tan O > ) : (2.68)

Note that the latter difference is independent of the height of the point A (the reader should
understand why!).

Normal section
at Athrough B

Normal section
at B through A

Figure 2.11: Normal sectionsat A and B.

Ohio State University, Columbus, Ohio.
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Figure 2.12: Normal sectionsfor target points at different heights.

2.1.3.3 Geodesics

Consider the following problem: given two points on the surface of the ellipsoid, find the curve on
the ellipsoid connecting these two points and having the shortest length. This curve is known asthe
geodesic (curve). Geodesics on a sphere are great circles and these are plane curves; but, as
already mentioned, on the ellipsoid, geodesics have double curvature — they are not plane curves and
their geometry is more complicated. We will find the conditions that must be satisfied by geodetic
coordinates of points on ageodesic. The problem can be solved using the calculus of variations,
asfollows.

Let ds be the differential element of arc of an arbitrary curve on the ellipsoid. In terms of
differentia latitude and longitude, we found the relationship, (2.57), repested here for convenience:

ds= \/M2 dqo2 +N? coszqad/\2 : (2.69)

If a isthe azimuth of the curve at a point then the element of arc at that point may also be
decomposed according to the latitudina and longitudinal elementsusing (2.41) and (2.55):
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dscosa=Mdg,
(2.70)
dssin a = N cospdA .

Let | denote the length of a curve between two points, P and Q, on the ellipsoid. The geodesic
between these two pointsisthe curve, s, that satisfies the condition:

rQ
=] ds- min. (2.71)
Jp

The problem of finding the equation of the curve under the condition (2.71) can be solved by
the method of the calculus of variations. This method has many applications in mathematical
physics and general procedures may be formulated. In particular, consider the more general
problem of minimizing the integral of some function, F(x,y(X),y'(X)) , where y' isthe derivative of y

with respect to x :

~

I:J Fdx - min . (2.72)

It can be shown? that the integral (2.72) is minimized if and only if the following differential
equation holds

d OF oF _

oy oy 0 (2.73)

Thisis Euler’'s equation. Note that both total and partial derivatives are used in (2.73). Itisan
equation in y(x) . A solution to this equation (in essence, by integration) provides the necessary and
sufficient conditionson y(x) that minimizetheintegra (2.72).

In our case, by comparing (2.71) to (2.72), we have

Fdx=ds ; (2.74)
and, we will identify the points on an arbitrary curve by
o=¢A) . (2.75)

That is, we choose A to be the independent variable of the functional description of the curve on the
elipsoid (i.e, y= @ and x= A inthe more general formulation above). From (2.69), we have

8 Arfken,G. (1970): Mathematical Methods for Physics. Academic Press, New Y ork.
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2
ds:\/M2d¢2+(Ncosq0)2d/\2 :\/Mz(gf\o) +(Ncos@? dA ; (2.76)

s0 that

2
Fz\/Mz(gf) +(Ncos@)? =F(¢,9 , (2.77)

where ¢ =dg/dA .
Immediately, we seethat in our case F does not depend on A explicitly:

oF _

55 =0 - (2.78)

Now let F be that function that minimizes the path length; that is, F must satisfy Euler’s equation.
From (2.78) we can get afirst integral of Euler’s equation (2.73); it will be shown that it is given by

F-¢ g; = constant . (2.79)

To prove this, we work backwards. That is, we start with (2.79), obtain something we know to
be true, and finally argue that our steps of reasoning can be reversed to get (2.79). Thus,
differentiate (2.79) with respect to A :

d oF)
dA(F—(dM)—O | (2:80)

Explicitly, the derivativeis

oOF  d oF _

dF
35 P60 (28D)

Now, by the chain rule applied to F(A,@A),@(A)) , we get
dF _OoF OF oF
-t 30 @+ a9 ¢
(2.82)

_OF oF
—Wp(ﬂ*‘w(ﬁ,

because of (2.78). Substituting (2.82) into (2.81) yields
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oF d oF)_
(p(aqo_d}\aq))_o : (2.83)
Since, ingenera ¢ # 0, we must have

oF d oF
dp dA ag ~ (2:84)
But thisis Euler’ s equation, assumed to hold for our particular F. That is, the F defined by (2.79)
also satisfies Euler’ s equation. The process can be reversed to get (2.79) from (2.84); therefore,
(2.79) and (2.84) are equivalent in this case and (2.79) isafirst integral of Euler’ s equation (it has
now been reduced to afirst-order differential equation).

From (2.77), we see that

2
SF: M~ ¢ , (2.85)
9 /M2 g%+ (Ncosp)?
Substituting thisinto (2.79) yields
oF M? @2
F—¢w=\/M2(p2+(NCOS(p)2— — ¢ )
\/M @“+ (N cos ¢
, (2.86)
= (Ncos ¢) = constant .
v/ M2 g%+ (N cos ¢)2

The last equation is the condition on ¢ A) that must be satisfied for points having coordinates
(@A) that are on the geodesic.
Thederivetive, ¢ , can be obtained by dividing the two equations (2.70):

dp Ncos @
d~ M

cota . (2.87)

Substituting this derivative which holds for an arbitrary curve into the condition (2.86) which holds
only for geodesics, we get

(Ncosqa)2 _ Ncosg

N 2 a 2
\/MZ( (;\(/I)Sqocota) + (N cos ) \/1+cota

= constant . (2.88)

The last equality can be smplified to
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N cos ¢sin a = constant . (2.89)

This is the famous equation known as Clairaut’s equation. It saysthat all points on a geodesic
must satisfy (2.89). That is, if C is a geodesic curve on the ellipsoid, where ¢ is the geodetic
latitude of an arbitrary point on C, and a isthe azimuth of the geodesic at that point (i.e., the angle
with respect to the meridian of the tangent to the geodesic at that point), then ¢ and a arerelated
according to (2.89). Note that (2.89) by itself is not a sufficient condition for a curve to be a
geodesic; that is, if points on a curve satisfy (2.89), then this is no guarantee that the curve is a
geodesic (e.g., consider an arbitrary parallel circle). However, equation (2.89) combined with the
condition @' # 0 issufficient to ensure that the curve isgeodesic. This can be proved by reversing
the arguments of equations (2.79) — (2.89) (see Problem 8, Section 2.1.3.4).
From (2.49) and (2.17), specialized to u=b, wefind

p=Ncos ¢
(2.90)
=acosp,
and thus we have another form of Clairaut’s equation:
cos Bsin a = constant . (2.91)

Therefore, for points on a geodesic, the product of the cosine of the reduced latitude and the sine of
the azimuth is always the same value. We note that the same equation holds for great circles on the
sphere, where, of course, the reduced | atitude becomes the geocentric latitude.

Substituting (2.90) into (2.89) gives

p sin a = constant . (2.92)
Taking differentials leads to

snadp+pcosada=0. (2.93)
With (2.90) and (2.70), (2.93) may be expressed as

_dp

= 294
da cos a ds (2:99)
Again, using (2.70), thisisthe same as
_dp
= A . :
da v dqod (2.95)

It can be shown, from (2.39) and (2.50), that
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S(F;:(;j(p(Ncosqo):—Msinqo. (2.96)

Putting thisinto (2.95) yields another famous equation, Bessel’ s equation:
da=sn@dA . (2.97)

This holds only for points on the geodesic; that is, it is both a necessary and a sufficient condition
for acurve to be ageodesic. Again, the arguments leading to (2.97) can be reversed to show that
the consequence of (2.97) is(2.89), provided ¢' # 0 (or, cos a # 0), thus proving sufficiency.
Geodesics on the ellipsoid have arich geometry that we cannot begin to explore in these notes.
The interested reader is referred to Rapp (1992)° and Thomas (1970)19. However, it is worth
mentioning some of the facts, without proof.
1) Any meridianisageodesic.
2) Theequator isageodesic up to a point; that is, the shortest distance between two points on the
equator is along the equator, but not always. We know that for two diametrically opposite points on
the equator, the shortest distance is along the meridian (because of the flattening of the ellipsoid).
So for some end-point on the equator the geodesic, starting from some given point (on the equator),
jumps off the equator and runs along the ellipsoid with varying latitude.
3) Except for the equator, no other parallel circleisageodesic (see Problem 2.1.3.4-7.).
4) In general, a geodesic on the ellipsoid is not a plane curve; that is, it is not generated by the
intersection of a plane with the ellipsoid. The geodesic has double curvature, or torsion.
5) It can be shown that the principal normal of the geodesic curve is also the normal to the
ellipsoid at each point of the geodesic (for the normal section, the principal normal coincides with
the normal to the ellipsoid only at the point where the normal isin the plane of the normal section).
6) Following a continuous geodesic curve on the ellipsoid, we find that it reaches maximum and
minimum latitudes, @, = — @yin» like agreat circle on asphere, but that it does not repeat itself on
circumscribing the ellipsoid (like the great circle does), which is a consequence of its not being a
plane curve; the meridian ellipse is an exception to this.
7) Rapp (1991, p.84) gives the following approximate formula for the difference between the
normal section azimuth and the geodesi ¢ azimuth, &AB (see Figure 2.13):

9 Rapp, R.H. (1992): Geometric Geodesy, Part 11. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio.

10 Thomas, P.D. (1970): Spheroidal geodesics, reference systems and local geometry. U.S. Naval Oceanographic
Office, SP-138, Washington, DC.
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2
~ . s 1 S
Opg—Opp= 5 SN Gpg NA> cosZ(pA(cos pg—7 tan BN,
(2.98)
1
=3 (aAB—a'AB) 1

reciprocal normal
sections

geodesic
between A and B

Figure 2.13: Normal sections versus geodesic on the elipsoid.
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2.1.3.4 Problems

1. Split theintegral in (2.59) into four integrals, one over each quadrant, and consult a Table of
Integrals to prove the result.

2. Show that the length of a parallel circle arc between longitudes A; and A, isgiven by

L=(/\2—)\1) N cos ¢ . (2.99)

3. Find an expression for the length of ameridian arc between geodetic latitudes ¢4 and ¢, . Can
theintegral be solved anaytically?

4. Show that the area of the ellipsoid surface between longitudes A; and A, and geodetic latitudes
@ and ¢, isgiven by

%
—h2 cos pdg
AQ@ALA) =b" (A= Ay) | — — - (2.100)
(1—e sin qo)
2
Then consult a Table of Integrals to show that this reducesto
_b? sing 1 l+esng|%

Finaly, prove (2.63).

5. Consider two points, A and B, that are on the same paralldl circle.

a What should be the differences, a,g—a'ag and ag—a g, given by (2.67) and (2.68)
and why?

b) Show that in spherical approximation the parenthetical term in (2.67) and (2.68) is zero if
the distance s isnot large (hint: using the law of cosines, first show that
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: : s .S
sin gy =sin g cos - +cosqusm|\|—AcosaAB ;

then use small-angle approximations).

6. Suppose that a geodesic curve on the ellipsoid attains a maximum geodetic latitude, ¢, -
Show that the azimuth of the geodesic asiit crosses the equator is given by

(2.102)

a=sin"?} OO e
m_ .

\/1—ezsin2(qnax

7. Using Bessel’s equation show that a parallel circle arc (except the equator) can not be a
geodesic.

8. Provethatif ¢'# 0 then equation (2.89) is a sufficient condition for a curve to be a geodesic,
i.e., equations (2.79) and hence (2.71) are satisfied. That is, if all points on a curve satisfy (2.89),
the curve must be ageodesic.
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2.1.4 Direct/Inverse Problem

There are two essential problems in the computation of coordinates, directions, and distances on a
particular given dlipsoid (see Figure 2.14):

The Direct Problem: Given the geodetic coordinates of a point on the ellipsoid, the
azimuth to a second point, and the geodesic distance between the points, find the
geodetic coordinates of the second point, as well as the back-azimuth (azimuth of the
first point at the second point), where al azimuths are geodesic azimuths. That is,

given: ¢, Ay, a;, S0; find: @, A, a,.

The Inverse Problem: Given the geodetic coordinates of two points on the ellipsoid,
find the geodesic forward- and back-azimuths, as well as the geodesic distance between
the points. That is,

given: ¢, Ay, @, Ay find: ay, 0y, S5

The solutions to these problems also form the basis for the solution of general ellipsoidal triangles,
analogous to the relatively simple solutions of spherical trianglesl. In fact, one solution to the
problem is developed by approximating the ellipsoid locally by a sphere. There are many other
solutions that hold for short lines (generally less than 100 — 200 km) and are based on some kind
of approximation. None of these developments is simpler in essence than the exact (iterative, or
series) solution which holds for any length of line. The latter solutions are fully developed in
(Rapp, 1992)12, However, we will consider only one of the approximate solutions in order to
obtain some tools for simple applications. In fact, today with GPS the direct problem as
traditionally solved or utilized is hardly relevant in geodesy. The indirect problem is still quite
useful as applied to long-range surface navigation and guidance (e.g., for oceanic commercial
navigation).

11 Eplert, D. (1993): Methoden der ellipsoidischen Dreiecksberechnung. Report no.292, Institut fir Angewandte
Geodasie, Frankfurt a. Main, Deutsche Geodétische Kommission.

12 Rapp. R.H. (1992): Geometric Geodesy, Part II. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio.
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Pole

geodetic meridians

Py

Figure 2.14: Ellipsoidal geometry for direct and inverse geodetic problems.

One set of solutions of these problems is the Legendre-series solution. We assume that the
geodesic is parameterized by the arc length, s:

p=¢s), A=As), a=afs) . (2.103)

a isthe forward azimuth at any point on the geodesic. Let a denote the back-azimuth; we have
a=a+ 1. Then, aTaylor series expansion formally yields:

do 1 dz(p 2

N ot (2.104)
BTAT g T2 i
RN 1dA 2 _ 2

0= l+£ S:I-2.|_E dsz 1512+... ; ( 105)
_ 1 d%a|
02=al+ 7T+dS 312+E@ 812"' (2106)

1 1

The derivatives in each case are obtained from the differential elements of a geodesic and evaluated
at point P; . The convergence of the series is not guaranteed for all s;,, but it is expected for
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S12 << R (mean radius of the Earth), although the convergence may be slow.

Werecall the equations, (2.70):
dscosa =M dg,
dssin a = N cospdA ,
which hold for any curve on the ellipsoid; and Bessel’ s equation, (2.97):
da=sng@dA ,

which holds only for geodesics. Thus, from (2.107)

dp| _cosa;
El‘ M,
and
dA| _ sina;
ds| ~cos@N;

Now, subgtituting dA given by (2.107) into (2.108), we find

da

da _sna,
ds

N;

tang .

1
For the second derivatives, we need (derivations are | eft to the reader):

dM _ 3MNZ%e? sin gcosg _

do a’ ’
dN _ . o . )
do - Me'“ sin pcosg ;

d .
@(NCOS(,D)Z—MSH’IQD.
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Using the chain rule of standard calculus, we have

cosa
M

dzqa_g

1 . da cosa dM dg
=M SN G~ 2 dp ds (2.115)

which becomes, upon substituting (2.109), (2.111), and (2.112):

. 2 2 2 2 .
d? sin“a 3N} cos“a; € sin ¢ cos
%” -_MNltan(pl_ 1 12 ; “acsa (2.116)
ds” |, 1M1 a™M;
Similarly, for the longitude,
d2/\_ df sna | cosa da sna d do
ds2 ds(Ncos (p) " Ncosg ds NZCOSZQquo(NCOSw) ds '’ (2117)

which, with appropriate substitutions as above, leads after smplification (Ieft to the reader) to

d?A
ds?

_2sna;cosa

tan g . (2.118)

- 2
1 Nlcos(p_L

Findly, for the azimuth

2 - ] i
da d(sma )zcosa da sna dNdp sna _ 3;0 (2.119)

o2 ds| N N @572 P %dpds TN

that with the substitutions for the derivatives as before and after considerable ssimplification (left to
the reader) yields

d’a
ds?

l

Clearly, higher-order derivatives become more complicated, but could be derived by the same
procedures. Expressions up to fifth order are found in (Jordan, 1941)13: see also (Rapp,
1991)14,

13 Jordan, W. (1962): Handbook of Geodesy, vol.3, part 2. English translation of Handbuch der V ermessungskunde
(1941), by Martha W. Carta, Corps of Engineers, United States Army, Army Map Service.
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With the following abbreviations

S S
v:Nizsinal, u:Nizcosal, r72:e'zcosz(pl, t=tangq , (2.121)
1 1

the final solution to the direct problem up to second order in s;5/N; isthus given as follows, the
details of which are left to the reader. Substitute (2.109) and (2.116) into (2.104):

%_(HL_ 1 3 2 > .
Tnz—u—iv t—éu net+.-.-; (2.122)

substitute (2.110) and (2.118) into (2.105):
[Ag=Ag)cos@=v+uvt+ . ; (2.123)

and, substitute (2.211) and (2.120) into (2.106):

az—(a1+nj:vt+;uv(1+2t2+/72)+--- . (2.124)

The inverse solution can be obtained from these series by iteration. We write (2.122) and
(2.123) as

Ap=p—@ = (1 + 172) u+og, (2.125)
AA:AZ—Alzm‘S’(plmA, (2.126)

wheredgp and dA arethe residuals with respect to the first-order terms. Now, solving for u and v
we have

Ap-op
u= ,
1+/72

v=cos@ (A -03A) ; (2.127)

and, with (2.121) the equation for the forward-azimuth is

14 Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio.
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AV 1 2 AA -2
aq,=tan a—tan (1+/7 )cosqoldqo_&p : (2.128)
For the geodesic distance, we have a couple of choices, e.g., from (2.121) and (2.127)
N, cos ¢

Both (2.128) and (2.129) are solved together by iteration with starting values obtained by initially
setting 0¢p=0 and dA=0:

N, cos
©) _ 2 AA © _Ni1Cos¢
1

tan a

Then

A —57A0-D i _ Nicosg

_— , S =
Aqo—dqéj_l) 12 sin ag_l)

a¥ = tan? (1 + /72) cos ¢

¢ (m-aa0-9), =12, .

(2.131)
Note that the updates ¢ =2 and o292 are computed using both 3(1’2_1) and a(lj_l); and,
therefore, the iteration must be done in concert for both s, and a;. Also, a, is computed using
the solution of the direct problem, (2.124), once a,, u, and v have been determined through the
iteration. The correct quadrant of the azimuth should be determined by inspecting the signs of u
andv.

The iteration continues until the differences between consecutive values of s;, and a; are
smaller than some pre-defined tolerance. Note however, that the accuracy of the result depends
ultimately on the number of termsretained in dgp and dA. Rapp (1991) reports that the accuracy of
the fifth-order solutions is about 0.01 arcsec in the angles for distances of 200 km. Again, itis
noted that exact solutions exist, which are only marginally more complicated mathematically, as
derived in Rapp (1992).
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2.1.4.1 Problems
1. Derive (2.112) through (2.114).
2. Derive (2.118) and (2.120).

3. Derive (2.122) through (2.124).

pole
4. Consider an élipsoidd triangle, 4123 , with sides
being geodesics of arbitrary length. The following
are given: lengths of sides, s;, and s;3, the angle,
B, thelatitude and longitude of point 1, (¢,A, ], and
the azimuth a4, (see Figure). Provide a detailed
procedure (i.e., what problems have to be solved and
provide input and output to each problem solution) to
determine the other two angles, ,, B;, and the
remaining side of thetriangle, Sy .

5. Provide an algorithm that ensures proper quadrant determination for the azimuth in the direct
and inverse problems.

6. For two points on an ellipsoid, with known coordinates, give a procedure to determine the
congtant in Clairaut’ s equation for the geodesi ¢ connecting them.
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215 Transformation Between Geodetic and Cartesian Coordinates
We wish to transform from the geodetic coordinates, ((ﬂ)\,h) , for points in space and related to the
ellipsoid, (a,f | , to Cartesian coordinates, (x,y,z) , and vice versa. It is assumed that the Cartesian
originisat the éllipsoid center and that the Cartesian coordinate axes are mutually orthogona aong
the minor axis and in the equator of the ellipsoid. Referring to Figure 2.15a, we see that
X=pPCOoSA,
(2.132)
y=psinA,
where p =4/ X2 + y2 . Since aso (compare with (2.49))
p=(N+h)cosg (2.133)
from Figure 2.15b, it is easily seen that
x=(N+h) cos ¢gcos A,
(2.139)
y=(N+h)cosgsnA.
Now, from (2.25) and (2.50), we also have:
z=(N(1-€?)+h)sing. (2.135)

In summary, given geodetic coordinates, (@A h), and the ellipsoid to which they refer, the Cartesian
coordinates, (x,y,z) , are computed according to:

(N +h) cos gcos A
=| (N+h)cosgsinA | . (2.136)
(N (1—e2) + h) sng

N < X

It is emphasized that the transformation from geodetic coordinates to Cartesian coordinates cannot
be done using (2.136) without knowing the ellipsoid parameters, including the presumptions on the
origin and orientation of the axes. These obvious facts are sometimes forgotten, but are extremely
important when considering different geodetic datums and reference systems.
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Figure 2.15: Geodetic latitude vs Cartesian coordinates.

The reverse transformation from Cartesian to geodetic coordinates is somewhat more
complicated. The usual method is by iteration, but closed formulas aso exist. The longitudeis
easily computed from (2.132):

A=tan

_ 1¥
= (2.137)

The problem isin the computation of the geodetic latitude, but only for h# 0. From Figure 2.15b,
wefind

L h S
ton o= (N TSN @ (2.139)
X2 +y2
From (2.135), thereis
(N+h)sin(p=z+Nezsinq0; (2.139)
and, therefore, (2.138) can be re-written as
1 z e?Nsin [0
p=tan | —F——|1+——||, (2.140)
X2 +y? z

for zz0. If z=0, then, of course, =0. Formula (2.140) is iterated on ¢, with starting value
obtained by initially setting h =0 in (2.135) and substituting the resulting z= N (1 —€?) sin ¢ into
(2.140):
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X2+y2

<o(o):tan-l( z (1+ e? 2)) (2.141)
1

Then, thefirst iterationis

@D = tan z (1+ e? NWO)) Sin§0(0)) |

X2+y2 V4

(2.14149)
noting that N also depends on ¢. The iteration continues until the difference between the new and
old values of @ is less than some pre-defined tolerance. This procedure is known as the
Hirvonen/Moritz algorithm. Rapp (1991, p.123-124)1> gives another iteration scheme devel oped
by Bowring that converges faster. However, the scheme above is also sufficiently fast for most
practical applications (usualy no more than two iterations are required to obtain mm-accuracy), and
with today’ s computers the rate of convergence is not an issue. Finally, a closed (non-iterative)
scheme has been developed by several geodesists, the one currently recommended by the
International Earth Rotation and Reference Systems Service (IERS) is given by Borkowski
(1989)16. 1n essence, the solution requires finding the roots of a quartic equation.

Once ¢ is known, the ellipsoid height, h, can be computed according to several formulas.
From (2.133), we have

2 2
h=YX¥Y N, gzo0 ; (2.142)

oS @

and, from (2.135), thereis

_ Z 2 o
h—w—N(l—e), Pz 0° . (2.143)

From Figure 2.16 and using simple trigonometric relationships (left to the reader), we find a
formulathat holdsfor al latitudes:

hz(p—acosﬁo) cos @+ (z—bsinﬁo)sinqo, (2.144)

15 Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio.

16 Borkowski, K.M. (1989): Accurate algorithms to transform geocentric to geodetic coordinates. Bulletin
Géodésique, 63, 50-56.
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where 3, isthe reduced latitude for the projection, Py, of P onto the ellipsoid along the normal,
and, therefore, can be determined from (2.26).

p=02+y)" P
h
acosf, ¢
z
|:)O
bsinB,

Figure 2.16: Determination of h from (xy,z) and ¢.
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2.1.5.1 Problems
1. Derive(2.144).

2. Show that the Cartesian coordinates, (x,y,z) , can be computed from given ellipsoidal coordinates,
(BA,u), according to

x =4/ u?+E? CoS BCOS A,

y= u?+E? cosfBsinA, (2.145)
z=usnp.

3. Show that the ellipsoidal coordinates, (8,A,u), referring to an ellipsoid with linear eccentricity,
E, can be computed from given Cartesian coordinates, (x,y,z) , according to

A:tan‘lx,
X

L 1 5 12
u=<2(r2—E2) +2\/(r2+ E2] —4E2p2) , (2.1454)

,3=tan_17Z Ju*+E’

up

where r2:x2+y2+z2 and p2:x2+y2. [Hint: Show that pZ:(u2+ Ez)cosz,B and
2_.2

Z°=u sinZ,B; and use these two equations to solve for u? and then B
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2.2 Astronomic Coordinates

Traditionally, for example with a theodolite, we make angular measurements (horizontal angles,
directions, and vertical angles) with respect to the direction of gravity at apoint, that is, with respect
to the tangent to the local plumb line. The direction of gravity at any point is determined naturally
by the arbitrary terrestrial mass distribution and the plumb line is defined by this direction. The
direction of gravity changes from point to point, even along the vertical, making the plumb line a
curved line in space, and we speak of the tangent to the plumb line at a point when identifying it
with the direction of gravity. Making such angular measurements as described above when the
target points are the stars with known coordinates, in fact, leads to the determination of a type of
azimuth and a type of latitude and longitude. These latter terrestrial coordinates are known,
therefore, as astronomic coordinates, or also natural coordinates because they are defined by
nature (the direction of the gravity vector) and not by some adopted ellipsoid.

We start by defining a system for these coordinates. The z-axis of this system is defined in
some conventiona way by the Earth’s spin axis. Saving the details for Chapters 4, we note that the
spin axisis not fixed relative to the Earth’ s surface (polar motion) and, therefore, amean z-axis, as
well as a mean x -axis are defined. The mean axes are part of the IERS Terrestrial Reference
System (ITRS), established and maintained by the International Earth Rotation and Reference
Systems Service (IERS); the ITRS was also known in the past as the Conventional Terrestrial
Reference System. The mean pole is known as the Conventional International Origin (ClO), or
also the |ERS Reference Pole (IRP). The plane that contains both the mean z-axis and x -axisis
the mean Greenwich Meridian plane, or also the |ERS Reference Meridian plane.

We next define the astronomic meridian plane for any specific point, analogous to the
geodetic meridian plane for points associated with the ellipsoid. However, thereis one essential and
important difference. The astronomic meridian plane is the plane that contains the tangent to the
plumb line at a point and is (only) parallel to the z-axis. Recall that the geodetic meridian plane
contains the normal to the ellipsoid, as well as the minor axis of the ellipsoid. The astronomic
meridian plane does not, generally, contain the z-axis. To show that this plane aways exists,
simply consider the vector at any point, P, that is parallél to the z-axis (Figure 2.17). This vector
and the vector tangent to the plumb line together form a plane, the astronomic meridian plane, and it
isparald to the z-axis. We aso recall that the tangent to the plumb line does not intersect Earth’s
center of mass (nor its spin axis) due to the arbitrary direction of gravity.

Now, the astronomic latitude, @, is the angle in the astronomic meridian plane from the
equator (plane perpendicular to the z-axis) to the tangent of the plumb line. And, the astronomic
longitude, A, isthe angle in the equator from the x -axis to the astronomic meridian plane. The
astronomic coordinates, (®,/) , determine the direction of the tangent to the plumb line, just like the
geodetic coordinates, (@A), define the direction of the ellipsoid normal. The difference between
these two directions at a point is known as the deflection of the vertical. We will return to this
angle in Chapter 3.
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astronomic zenith

parallel to z-axis }
(tangent to plumb line)

astronomic meridian plane
9 (parallel to z-axis)

Figure 2.17: Astronomic meridian plane and astronomic coordinates.

To complete the analogy with previously defined geodetic quantities, we also consider the
astronomic azimuth. The astronomic azimuth is the angle in the astronomic horizon (the plane
perpendicular to the tangent of the plumb line) from the northern half of the astronomic meridian,
easterly, to the plane containing both the plumb line tangent and the target point (the vertical
plane); see Figure 2.19. Finally, the astronomic zenith angle (also known as the zenith distance)
isthe angle in the vertical plane from the tangent to the (outward) plumb line (astronomic zenith)
to the target point. We note that heights are not part of the astronomic coordinates, but that heights
may be included in the definition of natural coordinates, where in this case the height is based on
the geopotential; we will treat thislater briefly in connection with vertical datums (Chapter 3).
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2.2.1 Problems

1. Provide ajudtification that, theoretically, two distinct points on a surface (like the ellipsoid, or
geoid) could have the same astronomic latitude and longitude, @ and A .

2. Determine which of the following would affect the astronomic coordinates of afixed point on
the Earth’s surface: i) a translation of the coordinate origin of the (x,y,z) system; ii) a general
rotation of the (x,y,z) system. Determine which of the following would be affected by arotation
about the z-axis: astronomic latitude, @ ; astronomic longitude, A ; astronomic azimuth, A . Justify
your answersin all cases.

3. Assumethat the ellipsoid axes are parallel to the (x,y,z) system. Geometrically determine if the
geodetic and astronomic meridian planes are parallél; provide a drawing with sufficient discussion
to justify your answer. What are the most general conditions under which these two planes would
be parald?
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2.2.2 Local Terrestrial Coordinates

This set of coordinates forms the basis for traditional three-dimensional geodesy and for close-
range, local surveys. It isthe system in which we make traditional geodetic measurements of
distance and angles, or directions, using distance measuring devices, theodolites, and combinations
thereof (total station). It is also still used for modern measurement systems, such as in
photogrammetry, for local referencing of geospatia data, and in assigning directions for navigation.
The local coordinate system can be defined with respect to the local ellipsoid normal (local
geodetic system) or the local gravity vector (local astronomic system). The developments for both
areidentical, where the only difference in the end is the specification of latitude and longitude, i.e.,
the direction of the vertical. Thelocal system is Cartesian, consisting of three mutually orthogonal
axes, however, their principal directions do not always follow conventional definitions (in surveying
the directions are north, east, and up; in navigation, they are north, east, and down, or north, west,
and up).

For the sake of practical visualization, consider first the local astronomic system (Figure 2.18).
Thethird axis, w, is aligned with the tangent to the plumb line at the local origin point, P, whichis
also the observer’spoint. Thefirst axis, u, isorthogonal to w and in the direction of north, defined
by the astronomic meridian. And, the second axis, v, is orthogonal to w and u and points east.
Note that (u,v,w) are coordinatesin an left-handed system. Let Q be atarget point and consider
the coordinates of Q inthislocal astronomic system.

z

w  (astronomic zenith)

(north)
¥ (east)

Figure 2.18: Local astronomic system, (u,v,w) .
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Figure 2.19: Local astronomic coordinates and measured quantities.

With reference to Figure 2.19, the measured quantities are the distance from P to Q, denoted
by cpq; the astronomic azimuth of Q a P, denoted Apg (we will discusslater in Section 2.3 how
to measure azimuths using astronomic observations); and the vertical angleof Q at P, denoted,
Vpg - Theloca Cartesian coordinates of Q inthe system centered a P are given in terms of these

measured quantities by
UpQ = CpQ COs VpQ COos ApQ ,
Vpg = Cpg COS Vpg SN Apg ,

WPQ = CpQ S.n VPQ .

Geometric Reference Systems
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Consider now a Cartesian coordinate system at P that is parallel to the global (x,y,x) system
(Figure 2.20); denote its axes, respectively, by ||x, |ly,,and ||z. Notethat the v -axisisawaysin the
plane generated by ||x and |ly since the u,w-plane is perpendicular to the equator because of the
definition of the meridian plane. The Cartesian coordinates of the point Q in this system are
smply

[IXpq = AXpg = Xq—Xp,
lYpQ = 4Ypo=Yo—Yp (2.147)
12pq = AZpg = 2~ 2p,

The relationship between the (u,v,w) and (|[x|ly.|lz) systemsis one of rotation and accounting for
the different handedness of the two systems. We can apply the following transformations to
change from (u,v,w| coordinatesto (||x,|ly,llz) coordinates:

MXpq 1 0 0 |[Upq
Lypg | = R3{180° = A\p| Ry 90° ~ @) | 0 =1 0 || Vpg | , (2.148)
Lzpq, 0 0 1 /|wpeg

where the right-most matrix on the right side of the equation transforms from aleft-handed system
to aright-handed system (only then can the rotation matrices be applied), and the rotation matrices
are given by (1.5) and (1.6). Theresulting transformation is (left to the reader to verify):

MXpq —sin@,cos\p  —sinAp cos @, cos\p | [Upg
Aypg |=| —sin GpsinAp cos/Np cos sinp || Vpg | - (2.149)
Azpq Ccos @, 0 sin @ Wpq

Therefore, substituting (2.146), wefind

MXpq —-sin@®,cos\p  —sin/Ap C0S @ COSNp | [ Cpg COS Vpg COSApg
dypq |=| —sin BsinAp cos/Np COS @SN Ap || CpgCOSVpoSINApg |
Azpg cos @ 0 sin @, Cpo SN Vpg

(2.150)

which gives the transformation from measured quantities, (ch,qu,ApQ) , to Cartesian coordinate
differencesin a global system, provided also astronomic latitude and longitude of the observer’s
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point are known.

It is remarkable that conventional determinations of astronomic latitude and longitude (see
Section 2.3), aswell as of astronomic azimuth, vertical angle, and distance can be used to determine
these relative Cartesian coordinates —thisis the basis for traditional three-dimensional geodesy, that
is, the computation of all three coordinates of points from terrestrial geometric measurements. We
note, again, that these determinations are relative, not absolute, where the latter can be obtained only
by specifying the coordinates, (xp,yp,zp) , of the observer’s point in the global system. Nowadays,
of course, we have satellite systems that provide the three-dimensional Cartesian coordinates
virtualy effortlesdy in aglobal system. Historically (before satellites), however, three-dimensional
geodesy could not be realized very accurately because of the difficulty of obtaining the vertical
angle without significant atmospheric refraction error. This is one of the principal reasons that
traditional geodetic control for a country was separated into horizontal and vertical networks, where
the latter is achieved by leveling (and is, therefore, not strictly geometric, but based on the
geopotential).

The reverse transformation from AXPQ,AyPQ,AzPQ) to (CPQ,VPQ,APQ) is easily obtained since
the transformation matrix is orthogonal. From (2.149), we have

T
Upg —sin@,cosN\p  —sin/\p  Ccos @ cosNp Mpq
Vpg |=| —SiNn@sinAp cos/p Cos @ SinNp Aypq | ; (2.151)
Wpq cos @, 0 sin &, Azpg

and, with (2.146), it iseasly verified that

o A = Vpg _ —AxPQsin/\P+Apr cosp (2.152)
PR Upg ~ —MXpo SN B COSAp—Aypo SN @SN Ap + Azpn cOS B '
W
sianQ:iQ:i AXpg COS B, COSAp + AYpn COS P SINANp + Azpgsin G|, (2.153)
Cpq  CpPQ
5 2 , \1/2
Cpo= (AXPQ + AyPQ + AZPQ) (2.154)

Analogous equations hold in the case of the local geodetic coordinate system. In this case the
ellipsoid normal serves as the third axis, as shown in Figure 2.21, and the other two axes are
mutually orthogonal and positioned similar to the axesin the local astronomic system. We assume
that the ellipsoid is centered at the origin of the (x,y,z) system, and we designate the local geodetic
coordinatesby (r,st). Itiseasily seen that the only difference between the local geodetic and the
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local astronomic coordinate systems is the direction of corresponding axes, specifically the
direction of the third axis; and, thisis defined by the appropriate latitude and longitude. This means
that the analogues to (2.150) and (2.152) through (2.154) for the local geodetic system are obtained
simply by replacing the astronomic coordinates with the geodetic latitude and longitude, ¢, and
Ap:

MXpq —singcosAp  —sinAp  COS ¢ COSAp | [ CpgCOS Upg COS Upg
Aypg |=| —singsinAp  cosAp COS @ SiNAp || CpgCOSUpg SINOpq |, (2.159)
Azpq COS ¢ 0 sn @ Cpg SiN Upg

where ap, isthe normal section azimuth and vpq isthe vertical angle in the normal plane of Q.
The reverse relationships are given by

tan pp = _ ~HpSnAp* AYpg0sip (2.156)
PR — AxpqoSin ¢ COS Ap— Aypn Sin ¢ SN Ap + Azpn cOS @
. 1 . .
SiN Upg = % (AXPQ COS @ COS Ap + Aypy COS ¢ SIN Ap + AZpg SN | (2.157)
2 2 2 \1/2
CPQ: (AXPQ+AyPQ+AZPQ) (2158)

The latter have application, in particular, when determining normal section azimuth, distance, and
vertical angle (in the normal plane) from satellite-derived Cartesian coordinate differences between
points (such as from GPS). Note that the formulas hold for any point, not necessarily on the
ellipsoid, and, again, that it is the normal section azimuth, not the geodesic azimuth in these
formulas.
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Figure 2.21: L ocal geodetic coordinate system.
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2.2.2.1 Problems

1. Derive equation (2.149).

2. Show that the transformation from local geodetic to local astronomic coordinates (same origin
point, P) isgiven by

Upq . _(AP_AP>Sin % (%o PQ
Ve |=| (Ap—Ap)Sin @ 1 —(Ap—Ap|COS Py || Spq | (2.159)
Wpq Bo— @ (Ap—Ap) cOs & 1 trQ

where second and higher powersin the differences, (@, — @] and (Ap—Ap| , have been neglected.
(Hint: the coordinates in the two systems have the same Cartesian differences.)

3. Suppose the geodetic coordinates, (qq;,/\ P) and (qq?,/\Q) , of two points on the ellipsoid are given
and the distance between them is under 200 km. Develop a procedure to test the computation of the
geodesic azimuths, &PQ and 5QP , obtained by the solution to the inverse geodetic problem
(Section 2.1.4). Discussthe validity of your procedure also from a numerical viewpoint.

4. @ Derivethefollowing two equalities:

tanApQ—tan CYPQ _ rpQVpQ—SpQUpQ
1+tanAthan aPQ a rpQUpQ+SpQVpQ .

tan (APQ— aPQ) = (2.160)

b) Now, show that to first-order approximation, i.e., neglecting second and higher powersin
the differences, (@ — ) and (Ap—Ap):

Spo t rpot
tan(ApQ—aPQ)z(/\p—/\P)sin ¢P+%(%—%)—%(AP—AP)®S<IJP :
"Po ™ Srq P Srq
(2.161)

(Hint: use (2.159).)

¢) Finaly, with the same approximation show that
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Apg—0pg=(/Ap—Ap|Sin @+ (sin Opq Pp— @) —COS apg (Ap— Ap| cOS cbp) tan Upg -
(2.162)

The latter is known as the (extended) Laplace condition, which will be derived from a more
geometric perspectivein Section 2.2.3.
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223 Differences Between Geodetic and Astronomic Quantities

As we will see in Section 2.3, the astronomic latitude, longitude, and azimuth are observable
guantities based on a naturally defined and realized coordinate system, such as the astronomic
system or the terrestrial reference system alluded to in Section 2.2. These quantities also depend on
the direction of gravity at a point (another naturally defined and realizable direction). However, the
guantities we use for mapping purposes are the geodetic quantities, based on a mathematically
defined coordinate system, the ellipsoid. Therefore, we need to devel op equations for the difference
between the geodetic and astronomic quantities, in order to relate observed quantities to
mathematically and geographically useful quantities. These equations will also be extremely
important in realizing the proper orientation of one system relative to the other.

Already in Problem 2.2.2.1-4, the student was asked to derive the difference between
astronomic and geodetic azimuth. We now do this using spherical trigonometry which aso shows
more clearly the differences between astronomic and geodetic latitude and longitude. In fact,
however, the latter differences are not derived, per se, and essentially are given just names, i.e.,
(essentially) the components of the astro-geodetic deflection of the vertical, under the following
fundamental assumption. Namely, we assume that the two systems, the astronomic (or terrestrial)
and geodetic systems, are parallel, meaning that the minor axis of the ellipsoid is parallél to the z-
axis of the astronomic system and the corresponding x -axes are parallel. Under this assumption
we derive the difference between the azimuths. Alternatively, we could derive the relationships
under more general conditions of non-parallelism and subsequently set the orientation angles
between axes to zero. The result would obviously be the same, but the procedure is outside the
present scope.

Figure 2.22 depicts the plan view of a sphere of unspecified radius as seen from the
astronomic zenith, that is, the intersection of the local coordinate axis, w, with this sphere. The
origin of this sphere could be the center of mass of the Earth or the center of mass of the solar
system, or even the observer’s location. Insofar as the radius is unspecified, it may be taken as
sufficiently large so that the origin, for present purposes, isimmaterial. We call this the celestial
sphere; see also Section 2.3. All points on this sphere are projections of radial directions and
since we are only concerned with directions, the value of the radius is not important and may be
assigned avalue of 1 (unit radius), so that angles between radial directions are equivalent to great
circle arcs on the sphere in terms of radian measure.

Clearly, the circle shown in Figure 2.22 is the (astronomic) horizon. Z, denotes the
astronomic zenith, and Z, is the geodetic zenith, being the projection of the ellipsoidal normal
through the observer, P (see Figure 2.21). Asnoted earlier, the angular arc between the two zeniths
is the astro-geodetic deflection of the vertical, © (the deflection of the tangent to the plumb line
from a mathematically defined vertical, the ellipsoid normal). It may be decomposed into two
angles, one in the south-to-north direction, &, and one in the west-to-east direction, n (Figure
2.23). The projections of the astronomic meridian and the geodetic meridian intersect on the
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celestial sphere because the polar axes of the two systems are parallel by assumption (even though
the astronomic meridian plane does not contain the z-axis, the fact that both meridian planes are
parallel to the z-axisimpliesthat on the celestial sphere, their projectionsintersect in the projection
of the north pole). On the horizon, however, there is a difference, A, , between astronomic and
geodetic north.

astronomic north 1 ( geodetic north
ua Al Ug
/ AN/ TN
astronomic geodg_tlc
meridian meridian
Of north pole
90° - d
90° - @
A
Za. local
| horizon
Z, --¢F Zs
H
% Q
celestia sphere % Qq
4,

Q

Figure 2.22: Astronomic and geodetic azimuths.
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Figure 2.23: Deflection of the vertica components.

Now, the angle at the north pole between the meridiansis 41 = A— A, again, because the two
systems presumably have parallel x-axes (common origin on the celestial sphere). From the
indicated astronomic and geodetic latitudes, we find by applying the law of cosinesto the triangle
Z,OF :

cos(90° — ¢ = cos ) cos(90° — @+ &) +sin  sin (90° — @ + &) cos 90° . (2.163)

Since np isasmall angle (usually of the order of 10 arcsec, or less), we have

sing=sin(®-¢), (2.164)
and hence
E=o—¢ . (2.165)

Applying the law of sinesto the same triangle, Z,OF , one finds

snn _sin(90°—qo) _

snAA sSn90° (2.166)
and, with the same approximation,
n=(A-A)jcosg . (2.167)

Thus, the north and east components, ¢ and 7, of the deflection of the vertical are essentialy the
differences between the astronomic and the geodetic | atitudes and longitudes, respectively.
Thegresat circlearc, u,Q,, in Figure 2.22 isthe same as the astronomic azimuth, A, to the target
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point, Q, while the great circle arc (approximately, since the two zeniths are close), u’;(jg , isthe
same as the geodetic (normal section) azimuth, a, of the target point. Thus, from Figure 2.22, we
obtain:

A—a=uQ,—UQg=4,+4, . (2.168)

It remainsto find expressionsfor A, and 4, .
From the law of sines applied to triangle ugOu, , wefind

SiﬂAl a gn¢
sinAA  sn90°

O A =AAsing, (2.169)

with the usual small-angle approximation. Similarly, intriangle QQQ, , the law of sinesyields

sind, sin(90°-zy)
sndp  sin90°

O A,=Apcoszy . (2.170)

Also, triangle Z,QH (see also Figure 2.23) yields

sndp _sina sna

sn(+g sinz, = Ap:(5+£>sinza ' (2.171)
Finally, from the approximately planar triangle Z,FH we obtain
n
= 2.172
£ tan (180° - a) ( )

which could also be obtained by rigorously applying the laws of cosines and sines on the spherical
triangle and making the usual small-angle approximations.
Substituting (2.171) and (2.172) into (2.170), we find

A,=(&+ ¢ sinacotz
(2.173)

=(&sna-ncosa|cotz,

where the approximation z = zy = z, islegitimate because of the small magnitude of 4,. We come
to the final result by combining (2.169) and (2.173) with (2.168):

A-a=(A-A)sinp+(Esina—ncosalcotz, (2.174)
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which, of course, in view of (2.165) and (2.167) isthe same as (2.162). Equation (2.174) isknown
asthe (extended) Laplace condition. Again, it isnoted that a isthe normal section azimuth. The
second term on the right side of (2.174) is the extended part that vanishes (or nearly so) for target
point on (or close to) the horizon, where the zenith angle is 90°. Even though this relationship
between astronomic and geodetic azimuths at a point is a consequence of the assumed parallelism
of the corresponding system axes, its application to observed azimuths, in fact, aso ensures this
parallelism, i.e., it isasufficient condition. This can be proved by deriving the equation under a
general rotation between the systems and specializing to parallel systems. The geodetic (normal
section) azimuth, a, determined according to (2.174) from observed astronomic quantities is
known as the Laplace azimuth.
The simple Laplace condition (for z=90°),

A-a=(A-A)jsing, (2.175)

describes the difference in azimuths that is common to all target points and is due to the non-
parallelism of the astronomic and geodetic meridian planes (Figure 2.22). Interestingly, the smple
Laplace condition is also the Bessel equation derived for geodesics (2.97) which, however, is
unrelated to the present context. The second term in the extended Laplace condition (2.174) (for
target points with non-zero vertical angle) depends on the azimuth of the target. It isanalogous to
the error in angles measured by a theodolite whose vertical is out of alignment (leveling error).
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2.2.3.1 Problems

1. Suppose the geodetic system is rotated with respect to the astronomic system by the small
angle, w,, about the polar axis. Repeat all derivations and thus show that the components of the
deflection of the vertical and the Laplace condition are now given by

{=P-09,

n=(A-A-w]cosy, (2.176)

A—a:(/\—/\—wz)sin o+ ((d)—(p)sin a—(/\—)t—wz) cosqacosa) cotz.

2. Suppose that an observer measures the astronomic azimuth of atarget. Describe in review
fashion all the systematic corrections that must be applied to obtain the corresponding geodesic
azimuth of the target that has been projected (mapped) along the normal onto an ellipsoid whose
axes are paraléel to the astronomic system.
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2.3 Cedestia Coordinates

In order to determine astronomic coordinates of points on the Earth, we make angular observations
of stars relative to our location on the Earth and combine these measurements with the known
coordinates of the stars. Therefore, we need to understand how celestial coordinates are defined
and how they can be related through terrestrial observations to the astronomic coordinates. Later
we will aso discuss the orientation of the terrestrial coordinate systems with respect to inertial space
and, again, we will have need of celestial coordinates.

For the moment, we deal only with directions, or angles, because all celestial objects that
concern us (stars, quasars) are extremely distant from the observer on the Earth. Thus, asin
Section 2.2, we project the coordinate directions of observable objects, aswell as general directions,
radially onto the celestial sphere. At the risk of being too repetitive, this is a fictitious sphere
having infinite or arbitrary (e.g., unit) radius; and, formally the center of this sphereis at the center
of mass of the solar system. However, it can have any of a number of centers (e.g., the geocenter),
where transformation from one to the other may or may not require a correction, depending on the
accuracy required in our computations. Certainly, thisis of no consequence for the most distant
objectsin the universe, the quasars (quasi-stellar objects). The main point isthat the celestial sphere
should not rotate in time, meaning that it defines an inertial system (in this course, we ignore the
effects of general relativity).

We introduce three coordinate systems: 1) the horizon system, in which we make our
astronomic observations; 2) the equatorial, right ascension system, in which we define coordinates
of celestial objects; and 3) the equatorial, hour angle system, that connects 1) and 2). Each
coordinate system is defined by mutually orthogonal axes that are related to naturally occurring
directions; we need two such directions for each system. Each system is either right-handed, or
left-handed.

231 Horizon System

The horizon system of coordinates is defined on the celestial sphere by the direction of local gravity
and by the direction of Earth’s spin axis, intersecting the celestial sphere at the north celestial pole
(NCP) (Figure 2.24). (For the moment we assume that the spin axisisfixed in space; see Chapter
4. Also, later we will be more precise and use the terms IRP or ClIO when referring to the terrestrial
reference system.) The positive third axis of the horizon system is the negative (upward) direction
of gravity (the zenith isin the positive direction). Thefirst axisis defined as perpendicular to the
third axis and in the astronomic meridian plane, positive northward. And, the second axis is
perpendicular to the first and third axes and positive eastward, so as to form aleft-handed system.
The intersection of the celestial sphere with the plane that contains both the zenith direction and an
object iscalled the vertical circle.
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The (instantaneous) coordinates of stars (or other celestial objects) in this system are the zenith
angle and the astronomic azimuth. These are also the observed quantities; however, instead of
azimuth, one may observe only a horizontal angle with respect to some other accessible reference
direction. Both are “astronomic” in the sense of being an angle that refers to the astronomic
zenith. The horizon system is fixed to the Earth and the coordinates of celestial objects changein
time as the Earth rotates.

3, zenith

v_erti ca
circle

north celestial
pole (NCP)

celestia
equator
1, north
astronomic
celestial horizon
sphere

Figure 2.24: Horizon system.

232 Equatorial, Right Ascension System

The equatorial, right ascension system of coordinates is defined on the celestial sphere by the
direction of Earth’s spin axis (the north celestial pole) and by the direction of the north ecliptic
pole (NEP), both of which, again, are naturally defined directions. Again, we assume the NEP to
be fixed in space. Figure 2.25 shows the (mean) ecliptic plane, which is the plane of the average
Earth orbit around the sun. The direction perpendicular to this plane is the north ecliptic pole.
Where the ecliptic crosses the celestial equator on the celestial sphere is called an equinox; the
vernal equinox, Y, isthe equinox at which the sun crosses the celestial equator from south to north
asviewed from the Earth. The angle between the celestial equator and the ecliptic is the obliquity of
theecliptic, €, itsvalueisapproximately £=23.44°.

Thefirst axis of the right ascension system is defined by the direction of the vernal equinox and
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the third axis is defined by the north celestial pole (NCP); by definition these two axes are
perpendicular since the vector defining the direction of the vernal equinox lies in the equatorial
plane with respect to which the polar axisis perpendicular. The second axisis perpendicular to the
other two axes so as to form aright-handed system. The intersection of the celestial sphere with the
plane that contains both the third axis (NCP) and the object is called the hour circle of the object
(Figure 2.26), the reason for which will become apparent in Section 2.3.3. The right ascension
system is assumed to be fixed in space, i.e., it isan inertial system in the sense that it does not
rotate in space.

The coordinates of stars (or other celestial objects) in the right ascension system are the
declination and the right ascension. Very much analogous to the spherical coordinates of latitude
and longitude on the Earth, the declination, J, is the angle in the plane of the hour circle from the
equatoria plane to the object; and the right ascension, «a, isthe angle in the equatorial plane from
the vernal equinox, counterclockwise (as viewed from the NCP), to the hour circle of the object.
For geodetic applications, these coordinates for stars and other celestial objects are assumed given.
Since the right ascension system isfixed in space, so are the coordinates of objectsthat are fixed in
space; stars do have lateral motion in this system and this must be known for precise work.

For later reference, we also define the ecliptic system which is a right-handed system with the
same first axis (vernal equinox) as the right ascension system. Itsthird axis, however, isthe north
ecliptic pole. Coordinates in this system are the ecliptic latitude (angle in the ecliptic meridian
from the ecliptic to the celestia object), and the ecliptic longitude (angle in the ecliptic from the
vernal equinox to the ecliptic meridian of the celestial object).

north ecliptic pole (NEP)

vernal equinox
(First point of Aries)

Figure 2.25: Mean ecliptic plane (seasons are for the northern hemisphere).
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Figure 2.26: Equatorial, right ascension system.

233 Equatorial, Hour Angle System

The equatorial, hour angle system of coordinates is introduced as a link between the horizon
system, in which observations are made, and the right ascension system, in which coordinates of
observed objects are given. As with the previous systems, the hour angle system is defined by
naturally occurring directions: the direction of Earth’s spin axis (NCP) which is the third axis of
the system, and the local direction of gravity which together with the NCP defines the astronomic
meridian plane. The first axis of the system is the intersection of the astronomic meridian plane
with the celestial equatorial plane; and, the second axisis perpendicular to the other two axes and
positive westward, so as to form a left-handed system (Figure 2.27). Asin the case of the horizon

system, the hour angle system isfixed to the Earth.
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Figure 2.27: Equatorial, hour angle system.

The (instantaneous) coordinates of stars (or other celestial objects) in this system are the
declination (the same as in the right ascension system) and the hour angle. The hour angle, t,
that gives this system its name, is the angle in the equatorial plane from the local astronomic
meridian to the hour circle of the celestial object. It isreckoned clockwise as viewed from the NCP
and increases with time. In fact it changes by 360° with a complete rotation of the Earth with
respect to inertial space for objects fixed on the celestial sphere (note that the declination remains
constant as the Earth rotates — assuming the direction of the spin axis remains fixed; it does not, as
wewill seein Chapter 4).

234 Coordinate Transfor mations

Transformations between coordinates of the horizon and right ascension systems can be
accomplished with rotation matrices, provided due care is taken first to convert the left-handed
horizon system to a right-handed system. We take another approach that is equally valid and
makes use of spherical trigonometry on the celestial sphere. Consider the so-called astronomic
triangle (Figure 2.28) whose vertices are the three important points on the celestial sphere common
to the two systems: the north celestial pole, the zenith, and the star (or other celestial object). Itis
left to the reader to verify that the labels of the sides and angles of the astronomic triangle, as
depicted in Figure 2.28, are correct (the parallactic angle, p, will not be needed). Using spherical
trigonometric formulas, such asthe law of sines (1.1) and the law of cosines (1.2), it isalso left to
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the reader to show that the following relationship holds:

cosAsinz —-sn® O cos @ cost cos o
snAsinz |= 0 -1 0 sintcoso | . (2.277)
Ccosz cos @ 0 sin @ sin o

The matrix on the right side is orthogonal, so that the following inverse relationship also holds

cost cos o —-sn® O cos @ cosAsinz
sintcoso | = 0 -1 0 snAsnz | . (2.178)
sin d cos @ 0 sin @ CoSz
Z (zenith)

S (star)
Figure 2.28: Astronomic triangle on the celestial sphere.
Figure 2.29 compl etes the transformation between systems by showing the relationship between
the right ascension and the hour angle. Because the hour angle also is a measure of Earth’s

rotation with respect to areference on the celestial sphere, we identify the hour angle with atype of
time, specifically sidereal time (we will discusstime in more detail in Chapter 5). We define:

ty-= hour angle of the vernal equinox = local sidereal time (LST) . (2.179)

It isalocal time since it applies to the astronomic meridian of the observer. Clearly, from Figure
2.29, we have for an arbitrary celestia object with right ascension, a, and hour angle, t :

LST=a+t. (2.180)
We note that 24 hours of sidereal time is the same as 360 degrees of hour angle. Also, the hour

angle of the vernal equinox at the Greenwich meridian is known as Greenwich Sdereal Time
(GST).
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Figure 2.29: Transformation between right ascension and hour angle systems.

2.35 Determination of Astronomic Coordinates and Azimuth

The following is a very much abbreviated discussion of the determination of astronomic
coordinates, (@A), and astronomic azimuth, A, from terrestrial observations of stars. For more
details the interested reader isreferred to Mueller (1969)17. In the case of astronomic latitude, @,
we consider the case when a star crosses the local astronomic meridian of the observer. Then the
hour angle of the star is t = 0, and according to Figure 2.28, we have smply

90° - ®=90°-S+zy O ®=6y-2y,
(2.181)
90°— 0= 90° - P+2zg [ ®= g+ 75,

where d, o5 and zy, zg refer to the declinations and zenith angles of stars passing to the north,
respectively south, of the zenith. The declinations of the stars are assumed given and the zenith
angles are measured. Combining these, the astronomic latitude of the observer is given by

17 Mueler, 1.1 (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing
Co., New York.
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0= (8y+ 8~ (zn-29 - (2.182)

The reason for including stars on both sides of the zenith is that atmospheric refraction in the
observed zenith angle will tend to cancel in the second term in (2.182) if the corresponding zenith
angles are approximately equal. Also, it can be shown (Problem 2.3.6-2) that knowing where the
astronomic meridianis(i.e., knowing that t = 0) is not a critical factor when measuring the zenith
angle of astar at its culmination (the point of maximum elevation above the horizon, which the star
attains as it crosses the meridian).

Determining the astronomic longitude of an observer requires that a reference meridian be
established (the reference for latitudes is the equator which is established by nature). Historically,
thisis the meridian through the Greenwich Observatory near London, England. The longitude of
an observer at any other point is simply the difference between LST and GST (see Figure 2.29):

A=LST-GST . (2.183)

If we wait until a star crosses the local astronomic meridian, when t =0, then from (2.180)
LST = a, where the right ascension of the star must be given. Alternatively, using the law of
cosines applied to the astronomic triangle (Figure 2.28), we can calculate the hour angle for any
sighting of a star by measuring its zenith angle and having already determined the astronomic
latitude:

cosz—sin @sind
cost = s Dcosd (2.184)

It can be shown (Problem 2.3.6-3) that errors in the zenith measurement and the astronomic latitude
have minimal effect when the star is observed near the prime vertical. With t thus calculated, the
L ST isobtained, again, from (2.180) and the known right ascension of the observed star.

Either way, with the hour angle known or calculated, one needs a reference for longitudes, and
thisis provided by the GST. It means that the observer must have a clock (chronometer) that keeps
Greenwich Sidereal Time which isrecorded at the moment of observation.

The determination of astronomic azimuth isless straighforward and can be accomplished using
either a calculation of the hour angle from a time measurement or the measurement of the zenith
angle. For thefirst case, the hour angle, t, of astar can be calculated using (2.180), where LST is
determined from (2.183) based on a previous determination of the observer’s longitude and a
recording of GST at the moment of observation. Now, from (2.177), we have

sint
sin @ cost—cos ®@tan d ’

tan Ag= (2.185)
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where Ag is the (instantaneous) astronomic azimuth of the star at the time of observation. The
observer’s astronomic latitude and, as always, the declination and right ascension of the star are
assumed to be given.

Alternatively, using a star’ s observed zenith angle, we find its astronomic azimuth from the law
of cosines applied to the astronomic triangle (Figure 2.28):

sind—sin @ cosz

cosPsinz (2.186)

COSAg=

This does not require a determination of the hour angle (hence no longitude and recording of GST),
but isinfluenced by refraction errorsin the zenith angle measurement.

Of course, z or t and, therefore, Ag will change if the same star is observed at alater time. To
determine the astronomic azimuth of aterrestria target, Q , wefirst set up the theodolite (atelescope
that rotates with respect to vertical and horizontal graduated circles) so that it sights Q. Then at the
moment of observing the star (with the theodalite), the horizontal angle, D , between the target and
the vertical circle of the star isalso measured. The astronomic azimuth of the terrestrial target, Q, is
given by

Having established the astronomic azimuth of a suitable, fixed target, one has also established,
indirectly, the location of the local astronomic meridian —it isthe verticd circle at a horizontal angle,
Aq, counterclockwise (as viewed from the zenith) from the target.
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2.3.6 Problems

1. Deriveeguation (2.177).

2. @ Starting with the third component equation in (2.177), and also using the first component
equation, show that (assuming do=0)

O=— dz —tan Acos @ dt . (2.188)
COS A

b) Determine the optimal azimuth for measuring a star’s zenith angle so as to minimize the
error in calculating the astronomic latitude due to errors in the zenith angle measurement and in the
determination of the hour angle.

3. @ AsinProblem 2, use (2.177) and other relationships from the astronomic triangle to show
that

dz cot A

dt:_sinAcosdD_cosd?

do . (2.189)

b) Determine the optimal azimuth for measuring a star’ s hour angle so asto minimize the error
in calculating the astronomic longitude due to errors in the zenith angle measurement and in the
determination of the astronomic latitude.

4. @ AsinProblem 2, use (2.177) and further trigonometric relations derived from Figure 2.28,
to show that

Cosp cos O
dAs=—5nz

dt+cotzsnAdo , (2.190)
where p isthe parallactic angle.

b) Determine optimal conditions (declination of the star and azimuth of observation) to
minimize the error in the determination of astronomic azimuth due to errors in the cal culations of
hour angle and astronomic latitude.
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5. @ From(2.186), show that

sin AgdAg= (cot z—cosAgtan CD) dCD—(tan @ — cos Agcot z) dz . (2.191)

b) Show that the effect of alatitude error isminimized if the hour angleist=90° or t=270°;
and that the effect of a zenith angle error is minimized when the parallactic angleis p = 90° .
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Chapter 3
Terrestrial Reference Systems

Geodetic control at local, regional, national, and international levels has been revolutionized by the
advent of satellite systems that provide accurate positioning capability to terrestrial observers at al
scales, where, of course, the Global Positioning System (GPS) has had the most significant impact.
Theterrestria reference systems and frames for geodetic control have evolved correspondingly over
the last few decades. Countries and continents around the world are revising, re-defining, and
updating their fundamental networks to take advantage of the high accuracy, the ease of establishing
and densifying the control, and critically important, the uniformity of the accuracy and the
connectivity of the control that can be achieved basically in aglobal setting.

We will consider these reference systems, from the traditional to the modern, where it is
discovered that the essential concepts hardly vary, but the implementation and utility clearly have
changed with the tools that have become available. Even though the traditional geodetic reference
systems have largely been replaced by their modern counterpartsin North America and Europe, and
are in the process of being replaced in South America, they are still an important component for
many other parts of theworld. It istherefore, important to understand them and how they relate to
the modern systems.

We begin with the definition of the geodetic datum. Unfortunately, the definition is not
consistent in the literature and is now even more confusing vis-&vis the more precise definitions of
reference system and reference frame (Section 1.2). From NGS (1986)1, we find that the
geodetic datum is “a set of constants specifying the coordinate system used for geodetic control,
i.e,, for calculating coordinates of points on the Earth.” The definition given there continues with
qualifications regarding the number of such constants under traditional and modern
implementations (which tends to confuse the essential definition and reducesit to speciaized cases

INGs (1986): Geodetic Glossary. National Geodetic Survey, National Oceanic and Atmospheric Administration
(NOAA), Rockville, MD.
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rather than providing a conceptual foundation). Other sources are less deliberate but add no
clarification. For example, Torge (1991)2 states that a geodetic datum “defines the orientation of
aconventional [coordinate] system with respect to the global X,Y,Z -system, and hence, with respect
to the body of the earth.” Moritz (1978)3, thetitle of his paper notwithstanding, only states that a
geodetic datum “is usually defined in terms of five parameters ...”; Ewing and Mitchell (1970)*
are also vague about the definition: “a geodetic datum is comprised of an elipsoid of revolution
fixed in some manner to the physical earth.” Finally, Rapp (1992)° attempts to bring some
perspective to the definition by giving a “simple definition” for a horizontal datum, which is
analogous to the discussion by Moritz.

All of these endeavors to define a geodetic datum are targeted toward the horizontal geodetic
datum (i.e., for horizontal geodetic control). We will provide a more systematic definition of
datums and try to relate these to those of reference systems and frames given earlier. The NGS
definition, in fact, provides areasonably good basis. Thus:

A Geodetic Datum is a set of parameters and constants that defines a coordinate
system, including its origin and (where appropriate) its orientation and scale, in such a
way as to make these accessible for geodetic applications.

This general definition may be used as a starting point for defining traditional horizontal and
vertical datums. It conforms to the rather vaguely stated definitions found in the literature and
certainly to the concepts of the traditional datums established for geodetic control. Note, however,
that the definition includes both the definition of a system of coordinates and its realization, that is,
the frame of coordinates. Conceptually, the geodetic datum defines a coordinate system, but once
the parameters that constitute a particular datum are specified, it takes on the definition of aframe.
Because of the still wide usage of the term, we continue to talk about the geodetic datum as defined
above, but realize that a more proper foundation of coordinates for geodetic control is provided by
the definitions of reference system and reference frame.
It is now asimple matter to define a geodetic datum for horizontal and vertical control:

A horizontal geodetic datum is a geodetic datum for horizontal geodetic control in
which points are mapped onto a specified ellipsoid.

2 Torge, W. (1991): Geodesy. Walter deGruyter, Berlin.

3 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on
Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA,
pp.63-75, National Geodetic Survey, NOAA.

4 Ewi ng, C.E. and M.M. Mitchell (1970): Introduction to Geodesy. Elsevier Publishing Co., Inc., New Y ork.

> Rapp, R.H. (1992): Geometric Geodesy, Part 11. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, COlumbus, OH.
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A vertical geodetic datum is a geodetic datum for vertical geodetic control in which
points are mapped to the geopotential.

The horizontal datum is two-dimensional in the sense that two coordinates, latitude and longitude,
are necessary and sufficient to identify a point; however, the geometry of the surface on which these
points are mapped is such that its realization, or accessibility, requires a three-dimensional
conceptualization. The vertical datum, on the other hand, is one-dimensional and requiresthe value
of but asingle parameter, the origin point, to be realizable. We will not discuss vertical datums at
length in these notes (Section 3.5).

3.1 Horizontal Geodetic Datum

The definition of any terrestrial coordinate system requires the specification of its origin and its
orientation with respect to the Earth. For three-dimensiona systems, we will see later that scaleis
also important; however, for horizontal systems describing only the angles, latitude and longitude,
the coordinate system scaleis not as critical; it is basically associated with heights (scale parameters
associated with horizontal distance measurements are part of the instrument error models, not part
of the coordinate system scale). In addition, if geodetic coordinates are used one must specify the
ellipsoid to which they refer. Therefore, the definition of the traditional horizontal geodetic datum is
based on eight parameters. three to define its origin, three to define its orientation, and two to
define the ellipsoid. More than that, however, the definition of the datum requires that these
coordinate system attributes be accessible; that is, for its practical utilization, the coordinate system
must be realized as aframe.

The origin could be defined by identifying the point (0,0,0) of the coordinate system with the
center of mass of the Earth. This very natural definition had one important defect before the
existence of observable artificial satellites — this origin was not accessible. In addition, the
ellipsoid thus positioned relative to the Earth rarely “fit” the region in which geodetic control was
to be established. (By agood fit we mean that the ellipsoid surface should closely approximate a
regional reference surface for heights - the geoid, or approximately mean sea level. This was
important in the past since observations on the surface of the Earth need to be reduced to the
ellipsoid, and the height required to do this was only known (measurable) with respect to the geoid.
Therefore, a good fit of the ellipsoid to the geoid implied that the difference between these two
surfaces regionally was not as important, or might be neglected, in the reduction of observations.
Nevertheless, it should be recognized that the neglect of the geoid, even with a good fit, can produce
systematic errors of the order of ameter, or more, that certainly with today’ s accuracy requirements
arevery significant.)

The dternative definition of the “origin” places the ellipsoid with respect to the Earth such that
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a specific point on the Earth’s surface has given (i.e., specified or defined) geodetic coordinates.
This datum origin point, also called the initial datum point, is then obviously accessible—itisa
monumented marker on the Earth’ s surface (see Figure 3.1).

z

topographic surface

origin point

Figure 3.1: Datum origin point.

There is no reason to define the orientation of the datum except to make the ellipsoid axes
paralle to the fundamental astronomic (conventional terrestrial reference) system. And, indeed this
is how the orientation is always defined. The three parameters associated with the orientation could
bethe angles, (wx @, wz) , between the élipsoidal and the x,y,z-axes; their values would be zero in
order to enforce the parallelism:

@, =0, @, =0, @,=0 . (3.1

The definition of orientation is thus simple enough, but the practical realization of this conditionis
less straightforward. In Section 2.2.3 we developed the relationships between astronomic and
geodetic quantities under the assumption that the two systems are parallel and that, basically, they
are concentric (i.e., the placement of the origin was considered to have no effect). In particular, we
found that the astronomic and geodetic azimuths are related by Laplace’'s condition, (2.174) with
(2.165) and (2.167):

A=a+(A—-A)sing+ ((db— @ sina—(A-A) cosq)cosa) cotz . (3.2

In addition we found that the components of the astro-geodetic deflection of the vertical could be
expressed simply as (essentialy) the differences in astronomic and geodetic latitude and longitude:
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(= 0-0,
(3.3)

n={(A-2A)cosg.

Equations (3.2) and (3.3) are necessary and sufficient for the two systemsto be parall€l.

If they were not parallel, each equation would contain additional terms involving the angles
(o, a,) ; and, similarly, additional terms would be included to account for the displacement of
theorigin. Tofirst order, these two effects (non-parallelism and origin off-set) are independent. It
is outside the scope of this exposition to derive the following formulas; however, they may be
found, in some fashion, in (Heiskanen and Moritz, 1967, p.213)% and (Pick et al., 1973,
p.436)7. Neglecting second-order terms in the small displacements, (Ax,Ay,Az) , and rotation
angles, (wx W, wz) , aswell as omitting the ellipsoidal eccentricity effects (i.e., using the mean Earth
radius, R, (2.66)), the astro-geodetic deflections, &isor aNd 17 gigrqr » aNd the azimuth, g o , With
respect to a displaced and rotated €llipsoid are given by:

. AX 4y . Az .
Edisrot = P— Bor + smq)(R cosA + sm/\) & cosp| + {— @, SN + a&,cosz\} , (3.4)
AX . ly .
r]dis,rot:(/\_/‘rot) cosp+ ﬁsn/\—ﬁ cosA +{(A&COSA + %SM—Q}ZCOS@ , (35)

Aisror = A— (N = A SINP— (( = Q) SNA—(A = Ay cosqocosa) cotz

AX A
+ tanqz{—R sinA + ﬁy cosh |+ (wxcosz\ + %QnA) cosp+ wzsinqo}
(3.6)
. AX 4y . Az : AX Ay
- (smqo(R cosA + R sm/\) “R cosqo)sma— R SinA "R cosx\)cosa cotz

+ ((wxsin)\ - a&,cos)\) sina + ((wx CosA + %énA) tang— wz> cosa) cotz,

6 Heiskanen, W.A. and H. Moritz (1967): Physical Geodesy, Freeman and Co., San Francisco.

7 Pick, M., J. Picha, and V. Vyskocil (1973): Theory of the Earth’s Gravity Field, Elsevier Scientific Publ. Co.,
Amsterdam.

Geometric Reference Systems 3-5 Jekeli, December 2006



where @, A,; @€ geodetic coordinates that refer to a geocentric ellipsoid with axes rotated from
the astronomic system. The left-hand sides of (3.4), (3.5), and (3.6) are quantities that refer to the
displaced and rotated ellipsoid. The rotation angles refer to rotations of the axes from the
astronomic to the geodetic systems; and the displacements refer to changes in the coordinates (not
the axes) from the geodetic to the astronomic systems. If we combine the effects due to the origin
displacement with the geocentric system coordinatesin (3.4) - (3.6), we thus have

Qrdisrot =®- %isrot + {_ 2% sinA + % COSAJ ’ (3-7)

Naisrot = (A= Adisro) COSP+ {wx cosA + &g, SinA — @, cosqo} , (3.9)

O gisrot = A— (A= Agigron SINQ— (( ®- (,Qﬁsrot) sina— (/\ - Adisrot) cosqocosa) cotz
(3.9)

+

(wxcosA + a&,sin)t) cosg+ a)zsin(p} :

where the geodetic coordinates, @js o Agisrot » Ffer to the displaced ellipsoid with axes rotated
from the astronomic system. Hence, applying (3.1) in these equations and comparing the results to
(3.2) and (3.3), we see that the latter are equations referring to an ellipsoid with axes parallel to the
astronomic system, and where &, n, a, ¢, A al refer either to a geocentric or to a displaced
ellipsoid.

When computing the geodetic azimuth of a target, Q, from the origin point, it should be
computed according to (3.2) as follows to ensure the parallelism of the astronomic and geodetic
systems:

0pq=Aoq—(No—Ao) SNy — (( @y~ ) Sindtg g —(Ag— A COSG cosaO,Q) cotzgg , (3.10)

where the coordinates, (¢,A,) , have aready been chosen, and the quantities, (®,/AqAoq) . have
been observed (i.e., they are not arbitrary, but are defined by nature); see also Section 2.2.3. The
zenithangle, 7, is also obtained by observation. It is sometimes stated that the Laplace azimuth,
dpq. & the origin is a parameter of the horizontal geodetic datum. However, we see with (3.10),
that, in fact, thisis not a parameter in the sense that it is given an arbitrarily specified value. Only by
computing the geodetic (Laplace) azimuth according to (3.4) can one be assured that the datum is
realized as being parallel to the astronomic system. In theory, only one Laplace azimuth in a
geodetic network is necessary to ensure the parallelism; but, in practice, several are interspersed
throughout the region to reduce the effect of observation error (Moritz, 1978)8. That is, asingle

8 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on
Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA,
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error in azimuth propagates in a systematic way through the network, causing significant rotational
distortions, unless controlled by other azimuth observations and correspondingly computed L aplace
azimuths elsawhere in the network.

The coordinates, (%,Ao,ho) , of the origin point can be chosen arbitrarily, but usualy they are
determined under an imposed additional condition that the separation between the ellipsoid and the
geoid in the particular region should be minimized. Inthe former case, one could choose

@D=D, Ao="o, ho=Hp , (3.11)

where Hy, is the height of the origin point above the geoid (the orthometric height); thisis a
measurable quantity, again defined by nature. With the choice (3.11), we see that the deflection of
the vertical, (3.3), at the origin point is zero (the normal to the ellipsoid is tangent to the plumb line
at this point), and the ellipsoid/geoid separation (the geoid height, or geoid undulation, Ng) at this
point is aso zero. Alternatively, we could also specify the deflection of the vertical and geoid
undulation at the origin point: (fo,ﬂo,No) . Then the geodetic latitude, longitude and ellipsoidal
height are not arbitrary, but are given by (see dso Figure 3.2)

Mo
cosgy’

®=P—<p, Ag=No— ho=Np+Hg , (312

which also helps ensure the parallelism of the geodetic and astronomic systems, because the first
two equations are based on (3.3).
origin point

topographic
surface

 +———_geoid
I
N

o

0

dlipsoid
Figure 3.2: Geoid undulation, Ny, at the origin point, in general.
To summarize, the horizontal geodetic datum as a reference system is defined as a system of

coordinates referring to an ellipsoid whose origin is fixed to the Earth in some prescribed way (e.g,
by “attaching” the ellipsoid to a monument on the Earth’s surface) and whose orientation is

pp.63-75, National Geodetic Survey, NOAA.
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defined with respect to the astronomic system. The datum as a reference frame is realized by
specifying the two ellipsoid parameters (shape and scale), the three origin point coordinates (as
illustrated above), and the three orientation parameters. However, the orientation parameters, being
specified by (3.1), are realized only indirectly through the utilization of (3.2) and (3.3) at al points
in the network where astronomic observations are related to geodetic quantities. Here the azimuth
plays the most critical rolein datum orientation.

311 Examples of Horizontal Geodetic Datums

Table 3.1, taken from (Rapp, 1992)9, lists many of the horizontal geodetic datums of the world
(not al arestill in service). NIMA (1997)10 also lists over 100 datums (however, without datum
origin point parameters). Note that the datum origin coordinates (Table 3.1) were chosen either
according to (3.11) or (3.12), or by minimizing the deflections or the geoid undulations (geoid
heights) over the region of horizontal control; or, they were simply adopted from a previous
network adjustment. Again, it is beyond the present scope to explore the details of these
minimization procedures and adjustments.

° Rapp, R.H. (1992): Geometric Geodesy, Part |1. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, COlumbus, OH.

10 NIMA (1997): Department of Defense World Geodetic System 1984, Its Definition and Relationships with
Local Geodetic Systems. Technical report TR8350.2, third edition, National Imagery and Mapping Agency,
Washington, D.C.
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Table 3.1: Selected Horizontal Geodetic Datums??.

DATUM SPHEROID ORIGIN LATITUDE LONGITUDE (E)
Adindan Clarke 1880 STATION Z, 22°10'07°110 31°29'217608
American Samoa 1962 Clarke 1866 BETTY 13 ECC -14 20 08.341 189 17 07.750
Arc-Cape (South Africa) Clarke 1880 Buffelsfontein -33 59 32.000 25 30 44.622
Argentine International Campo Inchauspe -35 68 17 297 49 48
Ascension Island 1958 International Mean of three stations -07 57 345 37
Australian Geodetic 1966 Australian Johnston Geodetic Station -25 56 54.55 133 12 30.08

National
Bermuda 1957 Clarke 1866 FT. GEORGE B 1937 32 22 44.360 295 19 01.890
Berne 1898 Bessel Berne Observatory 46 57 08.660 07 26 22.335
Betio Island, 1966 International 1966 SECOR ASTRO 01 21 42.03 172 55 47.90 .
Camp Area Astro 1961-62 USGS International CAMP AREA ASTRO =77 50 52.521 166 40 13.753
Canton Astro 1966 International 1966 CANTON SECOR ASTRO -02 46 28.99 188 16 43.47
Cape Canaveral* Clarke 1866 CENTRAL 28 29 32.364 279 25 21.230
Christmas Island Astro 1967 International SAT.TRI.STA. 059 RM3 02 00 35.91 202 35 21.82
Chua Astro (Brazil-Geodetic) International CHUA =19 45 41.16 311 53 52.44
Corrego Alegre International CORREGO ALEGRE -19 50 15.140 311 02 17.250
{Brazil-Mapping)
Easter Island 1967 Astro Internationat SATRIG RM No. 1 -27 10 39.95 250 34 16.81
Efate (New Hebrides) International BELLE VUE IGN -17 44 17.400 168 20 33.250
European (Europe 50) International Helmertturm 52 22 51.446 13 03 58.928
Graciosa Island {Azores) International SW BASE 39 03 54.934 331 57 36.118
Gizo, Provisional DOS International GUX -09 27 05.272 159 58 31.752
Guam 1963 Clarke 1866 TOGCHA LEE NO. 7 13 22 38.49 144 45 51.56
Heard Astro 1969 International INTSATRIG 0044 ASTRO -53 01 11.68 73 23 22.64
Iben Astro, Navy 1947 (Truk) Clarke 1866 IBEN ASTRO 07 29 13.05 151 49 44.42
Indian Everest Kalianpur 24 07 11.26 77 39 17.57
Isla Socorro Astro Clarke 1866 Station 038 18 43 44.93 24% 02 39.28
Johnston Island 1961 International JOHNSTON ISLAND 1961 16 44 49.729 190 29 04.781
Kourou {French Guiana) International POINT FONDAMENTAL 05 15 53.699 -52 48 09.149
Kusaie, Astro 1962, 1965 International ALLEN SODANO LIGHT 05 21 48.80 162 58 03.28
Luzon 1911 (Philippines) Clarke 1866 BALANCAN 13 33 41.000 121 52 03.000
Midway Astro 1961 International MIDWAY ASTRO 1961 28 11 34.50 182 36 24.28
New Zealand 1949 International PAPATAHI -41 19 08.900 175 02 51.000
North American 1927 Clarke 1866 MEADES RANCH 39 13 26.686 261 27 29.494
01d Bavarian Bessel Munich 48 08 20.000 11 34 26.483
01d Hawaiian Clarke 1866 OAHU WEST BASE 21 18 13.89 202 09 04.21
Ordnance Survey G.B. 1936 Airy, Herstmonceux 50 51 55.271 00 20 45.882
0SGB 1970 (SN) Airy Herstmonceux 50 51 55.271 00 20 45.882
Palmer Astro 1969 (Antarctica) International ISTS 050 -64 46 35.71 295 56 39.53
Pico de las Nieves {Canaries) International PICO DE LAS NIEVES 27 57 81.273 344 25 49.476
Pitcairn Island Astro International PITCAIRN ASTRO 1967 -25 04 06.97 229 53 12.17
Potsdam Bessel Helmertturm 52 22 53.954 13 04 01.183
Provisional S. American 1956 International LA CANOA 08 34 17.17 296 08 25.12
Provisional S. Chile 1963 International HITO XVIII -53 57 07.76 291 23 28.76
Pulkovo 1942 Krassovski Pulkovo Observatory 59 46 18.55 30 19 42.09
Qornoq (Greenland) International No. 7008
South American 1969 So#th American | CHUA -19 45 41.653 311 53 55.936
969 .
Southeast Island (Mahe) Clarke 1880 -04 40 39.460 85 32 00.166
South Georgia Astro International ISTS 061 ASTRO POINT 1968 -54 16 38.93 323 30 43.97
Swallow Islands (Solomons) International 1966 SECOR ASTRO -10 18 21.42 166 17 56.79
Tananarive International Tananarive Observatory -18 55 02.10 47 33 06.75
Tokyo bessel Tokyo Observatory (AZABU) " 3539 17.5148 | 139 44 40.90
Tristan Astro 1968 International INTSATRIG 069 RM No. 2 -37 03 26.79 347 40 53.21
USAFETR* Clarke 1866 PAD 3 28 27 57.7564 | 279 27 43.1180
Viti Levu 1916 (Fiji) Clarke 1880 MONAVATU (latttude only) -17 53 28.285
SUVA (longitude only) 178 25 35.835 1

Wake lsland, Astronomic 1952 International ASTRO 1952 19 17 19.991 166 38 46.294
Wake-Eniwetok 1960 Hough WAKE 19 16 19.606 166 39 21.798
WCT Vandenberg Adjustment® Clarke 1866 ARGUELLO 2, 1959 34 34 58.021 239 26 22.361
White Sands* Clarke 1866 KENT 1909 32 30 27.079 253 31 01.306
Yof Astro 1967 (Dakar) Clarke 1880 YOF ASTRO 1967 14 44 41.62 342 30 52.98

* Local datums of special purpose, based on NAD 1927 values for the origin stations.

11 NASA (1978): Directory of Station Locations, 5th ed., Computer Sciences Corp., Silver Spring, MD.
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3.1.2 Problems

1. Describe a step-by-step procedure to compute the geodetic latitudes and longitudes of pointsin
anetwork of measured horizontal angles and straight-line distances. Use diagrams and flowcharts
to show how the coordinates could be computed from the coordinates of other points and the
measurements (hint: direct problem!). Assume that the astronomic coordinates are observed at
every point, but that the astronomic azimuth is observed only at the origin point. We already
discussed all corrections needed to transform observed azimuths to geodesic azimuths; assume
similar procedures exist to transform straight-line distances to geodesic distances between points on
the ellipsoid. (For helpful discussions of this problem, see Moritz, 197812).

2. @ The softwarefor a GPS receiver gives positions in terms of geodetic latitude, longitude, and
height above the ellipsoid GRS80 (the ellipsoid for WGS84). For ¢=40°, A=-83°, and
h =200 m, compute the equivalent (x,y,z) coordinates of the point in the corresponding Cartesian
coordinate system.

b) Compute the geodetic coordinates (@A,h) of that point in the NAD27 system, assuming
that it, like GRS80, is geocentric (which it isnot!).

c) Now compute the coordinates (@A,h) of that point in the NAD27 system, knowing that the
the center of the NAD27 ellipsoid is offset from that of the WGS84 ellipsoid by

Xwessa —XNAD27 = —4 M, Ywessa —YNaDz7 = 166 M, Zygsss —Znapzz =183 m.  Compare
your result with 2.b).

3. Suppose the origin of a horizontal datum is defined by a monumented point on the Earth’s
surface.

a) The deflection of the vertical at the origin point is defined to be zero. If the geodetic
coordinates of the point are ¢=40° and A =—83°, what are the corresponding astronomic latitude
and longitude at this point? What assumptions about the orientation of the datum does thisinvolve?

c) Suppose the ellipsoid of the datum is shifted in the z-direction by 4 m, which datum
parameters will change, and by how much (give an estimate for each one based on geometrical
considerations; i.e., draw afigure showing the consequence of a change in the datum)?

12 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on
Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA,
pp.63-75, National Geodetic Survey, NOAA.
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3.2 Geodetic Control in North America (and the U.S.)

Each datum has a history that reflects the economic development of the region. In particular, the
North American Datum interestingly chronicles the westward expansion and globalization from its
initial definition for the eastern U.S. to the present-day definition. The New England Datum of
1879 used the Clarke 1866 €llipsoid with origin point at Station Principio in Maryland. This datum
was adopted for the entire country as the U.S. Standard Datum of 1901 soon after the trans-
continental triangulation was completed (1871-1897, 32 years after the completion of the trans-
continental railroad in 1869!). In 1909 the datum origin was chosen to be at Meades Ranch,
Kansas, upon an adjustment of the coordinates to fit the observed deflections of the vertical at
hundreds of points throughout the country. When Canada and Mexico adopted this datum for their
triangulationsin 1913, it became the North American Datum.

In 1927, amajor re-adjustment of the horizontal networks across the continent was undertaken
by holding the coordinates at Meades Ranch fixed. However, these coordinates have no special
significance in the sense of (3.11) or (3.12), being simply the determined coordinates in the
previous triangulations and adjustments. The datum was named the North American Datum of
1927 (NAD27). The orientation of the datum was controlled by numerous Laplace stations
throughout the network. It was estimated later with new satellite observations that the orientation
was accurate to about 1 arcsec (Rapp, 1992, p.A-6)13. Even though the new, more representative
International Ellipsoid (Table 2.1) was available, based on Hayford' s 1909 determinations, the
Clarke Ellipsoid of 1866 was retained for the datum since it was used for most of the computations
over the preceding years. In the reduction of coordinates of pointsin NAD27 to the ellipsoid, the
geoid undulation was neglected, and thus all Iengths technically refer to the geoid and not the
ellipsoid, or conversely, the ellipsoid distances have a systematic error due to this neglect. This
error manifested itself regionally as distortions of relative positions separated by several hundreds
and thousands of kilometers within the network. Similarly, angles were not corrected for the
deflection of the vertical and were reduced to the ellipsoid asif they were turned about the ellipsoid
normal. These approximate procedures and other deficiencies in the adjustment caused distortions
of parts of NAD27 (i.e., locally) up to 1 part in 15,000 (1 m over 15 km)! The adjustment was
donein parts, primarily treating the western and eastern parts of the country separately. Errorswere
distributed by the residuals between observed astronomic and geodetic latitude, longitude, and
azimuth along survey triangulation arcs, much like leveling residuals are distributed along leveling
loops. Geoid undulations were kept small in this way, since, in essence, this amounts to a
minimization of the deflections, which is equivaent to minimizing the slope of the geoid relative to
the dlipsoid, and thus minimizing the variations of the geoid undulation over the network.

13 Rapp, R.H. (1992): Geometric Geodesy, Part |1. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, COlumbus, OH.
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Because of itsrealization, fundamentally at aterrestrial monument, the NAD27 ellipsoid is not
geocentric. This was the situation for al datums in the world prior to the use of satellites for
geodetic positioning. However, once satellites entered the picture, it was possible to realize the
(0,0,0) origin of a datum at Earth’s center (of course, only to the extent of the observational
accuracy). In addition, extensive gravity observations in North America (particularly the U.S.,
propelled by the search for oil) yielded good models for the geoid undulation and the deflection of
the vertical. Also, early satellite altimetry and satellite perturbation analyses yielded much better
values for Earth’s size and the ellipsoidal flattening. Hence in the 1970’s and 1980’'s amajor re-
adjustment, aswell as are-definition, of the North American Datum was undertaken. The ellipsoid
was changed to that of the Geodetic Reference System 1980 (GRS80) and assumed to be
geocentric (system definition). That is, the Meades Ranch station was abandoned as the origin
point in favor of the geocenter. This geocentric realization was achieved by satellite Doppler
observations which yield three-dimensional coordinates of points with respect to the centroid of the
satellite orbits (i.e., the geocenter). Although astronomic observations of azimuth still served to
realize the orientation of the new datum, specifically the z-axis rotation (w,), the satellite
observations could now also provide orientation, especially the other rotations, 3 and @,. In
addition, very long-baseline interferometry (VLBI) began to deliver very accurate orientation on a
regional scale. Since geoid undulations could now be estimated with reasonable accuracy, they
were used in all reductions of distances and anglesto the ellipsoid. Thiswas, in fact, an important
element of the re-adjustment, since now the €llipsoid/geoid separation was not minimized in any
way; the geoid undulation over the conterminous U.S. varies between about —7 m (southern
Montana and Wyoming) and —37 m (over the Great Lakes). The result of the vast re-adjustment
was the North American Datum of 1983 (NAD83). For further details of the re-adjustment, the
reader is directed to Schwarz (1989)14 and Schwarz and Wade (1990)1°.

New realizations of NAD83 (now viewed as a 3-D reference system) were achieved with
satellite positioning techniques, originally the Doppler-derived positions, but mostly with the Global
Positioning System (GPS) that provided increased accuracy of the origin and orientation. The
NAD83(1986) readlization is based on a transformation of the Doppler station coordinates by a
4.5m trandation in the z-direction, a 0.814 arcsec rotation about the z-axis, and a scale change
of —0.6 ppm. Improvementsin the realization continued with High-Accuracy Regional Networks
(HARN'’s) derived from GPS, where the realizations NAD83(HARN) (1989 - 1997) changed the
scale by —0.0871 ppm, but retained the known origin and orientation offsets of 2m and
0.03 arcsec, respectively, from the geocenter and the mean Greenwich meridian, as realized by
more modern observations. The latest national realizations make use of the Continuously
Operating Reference Stations (CORS), based on GPS, throughout the U.S. yielding
NADS83(CORS93), NAD83(CORS94), and NAD83(CORS96) with each new adjustment. In

14 schwarz, C.R. (ed.) (1989): North American Datum 1983. NOAA Professional Paper NOS 2, national
Geodetic Information Center, National Oceanic and Atmospheric Administration, Rockville, Maryland.

15 schwarz, C.R. and E.B. Wade (1990): The North American Datum of 1983: Project methodology and execution.
Bulletin Géodésique, 64, 28-62.
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these realizations, the origin and orientation of the NAD83(1986) frame were, again, basically
retained. In thefuture, NAD83(NSRS) will be based on the completed HARN' s that constitute the
National Spatial Reference System (NSRS)16.

3.3 International Terrestrial Reference System

The international efforts to define a terrestrial system can be traced back to the turn of the last
century (1900's) when the International Latitude Service (ILS) (established in 1899 by the
International Association of Geodesy (IAG)) organized observations of astronomic latitude in order
to detect and monitor the motion of the pole (Section 4.3.1). The ILS was reorganized into the
International Polar Motion Service (IPMS) in 1962 by resolution of the International Astronomical
Union (IAU); and the IPMS officially continued the work of the ILS. Also, the Rapid Latitude
Service (RLS) of the Bureau International de I’ Heure (BIH) in Paris, France, was established in
1955 again by the IAU, and predicted coordinates of the instantaneous pole and served primarily to
help in the time keeping work of the BIH. In addition, the U.S. Navy and the Defense Mapping
Agency (U.S.) published polar motion results based on the latest observing technologies (such as
lunar laser ranging (LLR) and very long baseline interferometry (VLBI)).

In 1960, it was decided at the General Assembly of the International Union of Geodesy and
Geophysics (1.U.G.G.) to adopt asterrestrial pole the average of the true celestial pole during the
period 1900-1905 (a six-year period over which the Chandler period of 1.2 years would repeat five
times). This average was named the Conventional International Origin (ClO) starting in 1968.
Even though more than 50 observatories ultimately contributed to the determination of the pole
through latitude observations, the CIO was defined and monitored by the original 5 latitude
observatories under the ILS (located approximately on the 39th paralel; including Gaithersburg,
Maryland; Ukiah, California, Carloforte, Italy; Kitab, former U.S.S.R.; and Mizusawa, Japan).

The reference meridian was defined as the meridian through the Greenwich observatory, near
London, England. However, from the 1950’ s until the 1980’s, the BIH monitored the variation in
longitudes (due to polar motion and variations in Earth’s spin rate, or length-of-day) of many
observatories (about 50) and a mean “Greenwich” meridian was defined, based on an average of
zero-meridians, asimplied by the variation-corrected longitudes of these observatories.

These early conventions and procedures to define and realize a terrestrial reference system
addressed astronomic directions only; no attempt was made to define arealizable origin, although
implicitly it could be thought of as being geocentric. From 1967 until 1988, the BIH was
responsible for determining and monitoring the CIO and reference meridian. In 1979 the BIH
Conventiona Terrestrial System (CTS) replaced the 1968 BIH system with a better reference to the
ClO. However, the CIO as originally defined was not entirely satisfactory because it could be
accessed only through 5 latitude observatories. As of 1984, the BIH defined the BIH CTS (or

16 [http:/Avww.ngs.noaa.gov/initiatives/new_reference.shtml]
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BTS) based on satellite laser ranging, VLBI, and other space techniques. With the inclusion of
satellite observations, an accessible origin of the system could also be defined (geocentric). With
new and better satellite and VLBI observations becoming available from year to year, the BIH
published new realizations of its system: BTS84, BTS85, BTS86, and BTS87.

In 1988 the functions of monitoring the ClIO and the reference meridian were turned over to the
newly established International Earth Rotation Service (IERS), thus replacing the BIH and the
IPMS as service organizations. The time service, originally also under the BIH, now resides with
the Bureau International des Poids et Mésures (BIPM). The new reference pole realized by the
IERS, called the International Reference Pole (IRP), is adjusted to fit the BIH reference pole of
1967 — 1968 and presently is consistent with the CIO to within + 0.03 arcsec (1 m). Additional
information regarding the BIH may be found in (Mueller, 1969)17, Seidelmann (1992)18, and
Moritz and Mueller (1987)1°.

The IERS, renamed in 2003 to International Earth Rotation and Reference Systems Service
(retaining the same acronym), is responsible for defining and realizing both the International
Terrestrial Reference System (ITRS) and the International Celestial Reference System (ICRS).
In each case, an origin, an orientation, and a scale are defined and realized by various observing
systems. Since various observing systems contribute to the overall realization of the reference
system and since new realizations are obtained recurrently with improved observation techniques
and instrumentation, the transformations among various realizations are of paramount importance.
Especially, if one desires to combine data referring to different reference systems (e.g., NADS3,
ITRF94, ITRFI1, and WGS84), it isimportant to understand the coordinate relationships so that
the data are combined ultimately in one consistent coordinate system. We first continue this section
with a description of the ITRS and ITRF and treat transformations in the next section.

The IERS International Terrestrial Reference System is defined by the following conventions:

a) Theoriginisgeocentric, that is, at the center of mass of the Earth (including the mass of the
oceans and atmosphere). Nowadays, because of our capability to detect the small (cm-level)
variations due to terrestrial mass re-distributions, the origin is defined as an average location of the
center of mass and referred to some epoch.

b) The scaleisdefined by the speed of light in vacuum and the time interval corresponding to one
second (see Chapter 5) within the theory of general relativity and in the local Earth frame.

c) Theorientation is defined by the directions of the ClO and the reference meridian as given for
1984 by the BIH. Since it is now well established that Earth’s crust (on which our observing

17 Mudler, 1.1. (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing
Co., New York.

18 seidelmann, PK. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.

19 Moritz, H. and I.I. Mueller (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New Y ork.
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stations are located) is divided into plates that exhibit tectonic motion (of the order of centimeters
per year), it isfurther stipulated that the time evolution of the orientation of the reference system has
no residual global rotation with respect to the crust. That is, even though the points on the crust,
through which the system is realized, move with respect to each other, the net rotation of the system
with respect to itsinitia definition should be zero.

The origin is realized by observing the motion of artificial satellites, as well as the Moon, using
ranging techniques, where the most precise methods are based on laser ranging, although
microwave ranging using the GPS satellites has now also proved to yield good accuracy. The
centroid of satellite motion is the geocenter and by knowing the satellite orbits, measurements of the
distances to satellites can be used to solve for the coordinates of the observer. We do not go into
the details of how the orbits are determined, but it should be clear that, since the orbit isin a
geocentric frame, the determined coordinates of the observer are likewise geocentric. And, just like
for the traditional horizontal datum realization, the coordinates of a point (actually, the combination
of a set of points) must be adopted (minimum constraint), and all other observation points (other
realizations of the system) are related to the adopted values by known transformations (these
transformations areillustrated in section 3.4).

The scale is realized by the adopted constant for the speed of light and the definition of the
second as given by the BIPM (the Systéme International (SI) second in the geocentric frame,
Chapter 5), within the context of the theory of generd relativity.

The orientation of the ITRS is realized through the coordinates of points that refer to the CIO
(IRP) and the mean Greenwich meridian (now also called the International Reference Meridian,
IRM). It is maintained by the IERS using Earth orientation parameters that describe the polar
motion of the spin axis relative to the crust (Section 4.7) and its orientation with respect to the
celestial sphere (inertial space) as affected by precession and nutation (Sections 4.1 and 4.2).
Each new realization in orientation is constrained so that there is no net rotation with respect to the
previous redlization.

The model for the coordinates of any observing station is given by

X(t) = Xg + Vo(t —to) + 2 Ax; — Iy (1) (3.13)

where Xy and vy are the coordinates and their velocity of the observing station, defined for a
particular epoch, ty. These are solved for on the basis of observed coordinates, x(t), at time, t,
using some type of observing system (like satellite laser ranging). The quantities, Ax; , account for
various local geodynamic effects, such as solid Earth tides, ocean loading, atmospheric loading, and
post-glacial rebound. Finaly, the term, c)'xgc(t) , accounts for the instantaneous motion (few cm) of
the center of mass of the Earth due to mass movements of ocean and atmosphere, as well as
potential seasonal effects, relative to along-term, time-averaged position. The model to be used for
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the velocity due to tectonic plate motion (few cm/yr) is recommended to be the NNR-NUVEL 1A
model (McCarthy, 1996)2; thus,

Vo = Vuvera + Mg (3.14)

where Ve 1 1Sthe velocity given as aset of rotation rates for the major tectonic plates, and dv,,
isaresidua velocity for the station. The parameters xy and v for a number of points constitute
the ITRF, referring to epoch t .

3.4 Transformations

With many different realizations of terrestrial reference systems, aswell aslocal or regiona datums,
it isimportant for many geodetic applications to know the relationship between the coordinates of
pointsin these frames. The transformations of traditional local horizontal datums (referring to an
ellipsoid) with respect to each other and with respect to aglobal terrestrial reference frameisatopic
beyond the present scope. However, for standard Cartesian systems, like the ITRS and the World
Geodetic System of 1984 (WGS84, used for GPS), and even the new realizations of the NAD83
and other modern realizations of local datums (like the European Coordinate Reference
Systems?1), a simple 7-parameter similarity transformation (Helmert transformation) serves as
basic model for the transformations.
According to the definition of the IERS, this transformation mode is given by

Xio= T+ (1+ D) R X¢rom » (3.15)

where Xy, is the coordinate vector of a point in the frame being transformed to and X,y IS the
coordinate vector of that same point in the frame being transformed from. The translation, or
displacement, between frames is given by the vector, T, and the scale difference is given by D.
Unfortunately, the IERS definition concerning the rotations between frames is counter-intuitive,
where the rotation matrix, here denoted R", represents the rotation from the new frame (the to-
frame) to the old frame (the from-frame); see Figure 3.3. Since the rotation angles are small, we
have from (1.9):

1 -RB R
R =RI(R)R(R)RyR3)=| R3 1 —RL|, (3.16)
"R Rl 1

20 McCarthy, D.D. (ed.) (1996): IERS Conventions (1996). IERS Tech. Note 21, Observatoire de Paris, Paris.
21 hitp://crsifag.def
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where R1, R2 , and R3 arethe small rotation angles, in the notation and definition of the IERS.

%o

Zf rom

Xio Xtrom

Figure 3.3: Transformation parameters for the IERS and the NGS models.

Since D isalso asmall quantity, we can neglect second-order terms and write

X X T1 X 0 -R3 R2 X
y| =y +| T2 |+D|y +| RB 0 -Rl ||y . (3.17)
z), z T3 z -RR Rl O z

0] from from from

Each of the seven parameters of thismodel, T1, T2, T3, R1, R2, R3, and D, may have atime
variation that is ssimply modeled as being linear:

B()=Bo, + Bot—t), 1=1,...7, (3.18)

where B; refersto any of the parameters. The parameters, ,Boi and ,Boi ,i=1,..., 7, then condtitute
the complete transformation. The reader should not be confused between the designation of the
epoch, ty, and the designation “to” that identifies the frame to which the transformation is made.
Combining (3.17) and (3.18), we have

X X T1(t) X 0 -—-R3(t) R2(Y) X
y| =|y +| T2(t) |+D()| y + R3(t) O -—-RL(t)||y , (3.19)
Z)to \%/from T30 Z J rom —R2(t) R1(Y) 0 Z J rom
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wheret generally refersto ayear-epoch.

Table 3.2 lists the transformation parameters among the various |ERS (and BIH) terrestrial
Reference Frames since 1984. [ These numbers were obtained from various | ERS publications and
internet sites and have been known to contain some inconsistencies (see aso the ITRF internet
site??)]. Velocities were given only since 1993. Note that ITRF96 and | TRF97 were defined to be
identical to ITRF94 with respect to epoch 1997. The WGS84 reference frame as originally realized
is estimated to be consistent with the ITRF to about 1 min all coordinates. More recent realizations
of WGS84 are consistent with the current ITRF to afew centimeters. Table 3.3 lists transformation
parameters from I TRF97 to NAD83(CORS96) as published by the National Geodetic Survey23,
as well as estimated transformation parameters to other frames, as published by IERS?4. The
National Geodetic Survey (NGS) has adopted the ITRF97 as the primary geocentric frame for
transforming to the NAD83. Note that the rotation parameters in Table 3.3 represent the more
intuitive rotations from the from-frame to the to-frame. Also, note that the transformation
parameters are estimates with associated standard deviations (not listed here). Therefore, the
determination of the vector of coordinates through such atransformation should include arigorous
treatment of the propagation of errors.

22 http://lareg.ensg.ign.fr/I TRF/
23 Www.ngs.noaa.gov/CORS/Coords2.html
24 McCarthy, D.D. (ed.) (1992): IERS Conventions (1992). IERS Tech. Note 13, Observatoire de Paris, Paris.
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Table 3.2: Transformation parameters for recent terrestrial reference frames.

From |To TL|T1 | T2|T2 | T3|T3 | RL|RL | RR|R2 | RB|[R3 | DID | tq
cn cn cn|( 0.001"| 0.001"| 0.001" 1078
cmlyr cmlyr|  cm/fyr| 0.001"/yr [ 0.001"/yr [ 0.001"/yr 10_8/yr
BTS84 |BTS85 54 2.1 4.2 -0.9 2.5 =3.1 -0.5| 1984
BTS85 (BTS86 31 -6.0 5.0 -18 -18 -5.81 -1.7| 1984
BTS86 |BTS87 -3.8 0.3 -1.3 0.4 25 7.5 -0.2| 1984
BTS87 [ITRFO 0.4 -0.1 0.2 0.0 0.0 -0.2 -0.1| 1984
ITRFO [ITRF88 0.7 -0.3 0.7 -0.3 -0.2 -0.1 0.1]| 1988
ITRF88 [I TRF89 0.5 3.6 24 -0.1 0.0 0.0 -0.31| 1988
ITRF89 [ITRF90 -0.5 2.4 3.8 0.0 0.0 0.0 —0.3| 1988
ITRFOO [ITRFO1 0.2 04 1.6 0.0 0.0 0.0 -0.03| 1988
ITRFO1 |ITRF92 -1.1 -1.4 0.6 0.0 0.0 0.0 -0.14( 1988
ITRF92 [ITRF93 0.2 0.7 -0.7 -0.39 0.80 -0.96 0.12| 1988
-0.29 0.04 0.08 -0.11 -0.19 0.05 0.0
ITRFI3 [ITRF94 -0.6 0.5 15 0.39 -0.80 096 -0.04( 1988
0.29] -0.04f -0.08 0.11 0.19 -0.05 0.0
ITRF94 [ITRF96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1997
0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITRF96 [ITRF97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1997
0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITRF97 [ITRF -0.67| -0.61 1.85 0.0 0.0 0.0 -0.155| 1997
2000 0.0 0.06 0.14 0.0 0.0 -0.02( -0.001
X X T1(t) X 0 -—-R3(t) R2(t) X
y| =|y +| T2(t) |+D(@®) |y + R3(t) O -—RL(t)||y , (3.20)
Z)to \%)from T3() Z ) from —R2(t) RL() 0 Z ) from
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Table3.3: Transformation parameters for other terrestrial reference frames. Notethat £, =—R1,

y

&§=-R2,¢,=-R3.

From |To T1| T2|T2 B &le | gle | &lg DID | t,
T1 T3
om om cm| 0.001"| 0001"| 0001"| 1078
cmlyr|  cmlyr|  cm/yr{[0.001"/yr | 0.001"/yr | 0.001"/yr 10"8/yr
WGS72 [ITRFO -6.0 517 4723 18.3 -0.3|] -547.0 23.1( 1984
WGS841 | ITRF0 -6.0 51.7 22.3 18.3 -0.3 7.0 1.1( 1984
ITRF96 [NADS83 99.1] -190.7| -51.3 25.8 9.7 11.7 0.0] 1997
(CORS96) 0.0 0.0 0.0 0.053| -0.742| -0.032 0.0
ITRF97 [NADS83 98.9] -190.7| -50.3 25.9 9.4 11.6] -0.09( 1997
(CORS96) 0.07| -0.01 0.19 0.067| -0.757| -0.031| -0.02
ITRF NADS83 99.6] -190.1| -52.2 259 94 11.6 0.06( 1997
2000 (CORS96) 0.07| -0.07 0.05 0.067| -0.757| -0.051| -0.02
Loriginal realization; sign error for €, has been corrected.
X X T1() X 0 &) —g(t) ) /x
y| =ly| [ T20 [+DO|y| +|-&H 0 &) ||y (3.21)
2o \%/from T3(1) Z / trom gy(t) -g(t) O Z ) trom
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3.4.1 Transformationsto and Realizations of NADS3

IAG resolutions (Resolutions Nos1 and 4)*° recommend that regiond high-accuracy reference
frames be tied to an ITRF, where such frames associated with large tectonic plates may be
dlowed to rotate with these plates as long as they coincide with an ITRF a some epoch. This
procedure was adopted for NAD83, which for the conterminous U.S. and Canada lies (mostly)
within the North American tectonic plate. This plate has globd rotationd motion modeed
according to the NNR-NUVEL 1A mode by the following rates®®:

W, = 0.000258 rad/10°yr = 0.053 mas/yr =1.6 mm/yr
W, = - 0.003599 rad/10°yr =- 0.742 maslyr = - 22.9 mm/yr (3.22)
W, = -0.000153 rad/10°yr = - 0.032 mas/yr = - 0.975 mm/yr

where the last equdity for each rate uses the approximation that the Earth is a sphere with radius,
R=6371km. Theseratesare in the same sense as the IERS convention for rotations.

The transformation between NADS83 and ITRF can be determined (usng the standard
Helmert trandformation modd) if a sufficient number of points exigts in both frames. Such is the
case for NAD83 where 12 VLBI stations have 3D coordinates in both frames?’. The NADS3
3-D coordinates came from the origind ITRF89-NADS83 transformation. Now in order to
determine the trandformation parameters, the two frames should refer to the same epoch.  For
example, if ITRF96 is the frame to which NADS83 should be tied, then this epoch is 1997.0 (the
epoch of ITRF96). It is assumed that the NAD83 coordinates do not change in time due to plate
motion (and that there is no other type of motion). That is, the frame is attached to one plate and
within that frame the coordinates of these points do not change in time (at least to the accuracy of
the origind adjusment), even as the plate moves. Hence, one may assume that the NAD83 3D
coordinates dso refer to the epoch 1997.0. The solution for the Helmert transformation
parameters from I TRF96 to NAD83 resulted in:

T1(1997.0) =0.9910 m

T2(1997.0) =-1.9072m

T3(1997.0) =- 0.5129 m

R1(1997.0) = - 25.79 mas (3.23)
R2(1997.0) = - 9.65 mas

R2(1997.0) = - 11.66 mas

D(1997.0) =6.62 ppb

251 AG (1992): Geodesist’s Handbook. Bulletin Géodésique, 66(2), 132-133.

28 McCarthy, D.D. (ed.) (1996):|ERS Conventions (1996). |ERS Tech. Note 21, Observatoire de Paris, Paris.

27 Craymer, M., R. Ferland, and R.A. Snay (2000): Realization and unification of NAD83 in Canada and the U.S.
viathe ITRF. In: Rummel, R., H. Drewes, W. Bosch, H. Hornik (eds.), Towards an Integrated Global Geodetic
Observing System (IGGOS). IAG Symposia, vol.120, pp.118-21, Springer-Verlag, Berlin.
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where the angles refer to the convention used by IERS. The scde factor ultimately was set to
zero (D(1997.0) =0) so that the two frames, by definition, have the same scde.  Snay (2003)%°
notes that this is equivdent to determining a trandformation in which the transformed latitudes
and longitudes of the points in one frame would best approximate the latitudes and longitudes in

the other in a leet-sgquares sense. That is, the scde is essentidly the height, and the height s,
therefore, not being trandformed. We thus have

a0 aXo adlo 20 -R3 R2089<0
CyI Qy_ +¢T27+¢ R3 SRSy T (3.24)
ézB\IAD% é ﬂTRF96(1997.0) éTs@ é' RL 0 ﬂé ﬂTRF96(1997 0)

Now, the transformation parameters, thus determined, refer to a particular epoch (1997.0 in
this case). At other epochs, the NADS83 coordinates will not change (for these 12 dations), just
as assumed before; but, the coordinates of such points in the ITRF do change because the North
American plate is moving (rotating) in a globd frame. Therefore, the transformation between
NADS83 and ITRF96 should account for this motion a other epochs. For points on the North
American plate we may incorporaie the plate motion into the ITRF transformation from one
epoch to the next as

ax(t)o a(1997.0) 6 S 0 - W, (t- 1997.0) W, (t- 1997.0) Ge(1997.0)6

oI = gy(1997.0): +E W, (t- 1097.0) 0 W, (t-1997.0) Fy(1997.0)

8Z(t) Girgrs  62(1997.0)5 .. & W, (t-1997.0) W, t-1997.0) 0 22(1997.0) 5 .
(3.25)

where, eg., both x(t) and x(1997.0) refer to the IRTF96, but a different epochs. Substituting
thisinto the ITRF96-NADBS3 transformation, we obtain:

a0 a(t) ad16 ® 0 -B(t) R(t)dexod
&yz =gy(t); +ET2HER3() 0 -RIt)IEyD , (3.26)
oo 20 579 ER() RU) O BZareomo

Ri(t) = R1(1997.0) - W, (t- 1997.0)
R2(t) = R2(1997.0) - W, (t- 1997.0) (3.27)
R3(t) = R3(1997.0) - W, (t - 1997.0)

28 Snay, R. A. (2003): Introducing two spatial reference frames for regions of the Pacific Ocean. Surv. Land Inf.
Sci., 63(1), 5-12.
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which agrees with Craymer et d. (2000), as wel as Table 3.3. To see that it agrees with the
latter, we note tha the transformation (3.21) uses angles defined in the reverse sense (NGS
convention). Hence, eg.,

e,(t) =- Ri(t) = - R1(1997.0) + W, (t - 1997.0) . (3.28)

Using the trandformation (3.26), NGS thus redized NADS3 a dl CORS dations and designated
this redization NAD83(CORS96). By definition dl tempord variations in the displacement and
scale parameters in this transformation were set to zero.

For transformations to NADS83 from the next redization of ITRS, the NGS adopted dightly
different trandformation parameters than determined by the IERS. The transformation
parameters from ITRFI6 to ITRFO7 are published as zero (including zero time-derivatives of
these parameters); see Table 3.2.  Yet, the International GNSS Service (IGS) determined the
transformation ITRF96 to ITRF97 based soldly on GPS daions and found non-zero
trandformation parameters.  Since the control networks of NADS83 are now largely based on
GPS, NGS decided to use the IGS-derived ITRF96-t0-ITRF97 trandormation, yidding the
transformation parameters between ITRF97 and NAD83 as given in Table 3.3 and obtained
from:

ITRF97 ® NAD83(CORS96) = (ITRF97 ® ITRF 96), (3.29)
+(ITRF96® NAD83(CORS96)). '

For ITRFOO, there were only indgnificant differences between the trandformation parameters
determined by |ERS and by IGS, and thus we have

ITRFOO ® NADS83(CORS96) :(ITRFOO® ITRF97)
+(ITRF97 ® ITRF96),

+(|TRF96® NAD83(COR896)),

IERS

(3.30)

as verified by the numerica vauesin Tables 3.2 and 3.3.

Since the IGS-derived ITRF96-t0-ITRFI7 trandformation parameters are time-dependent, the
more generd trandformation to NAD83 now yieds time-dependent coordinates in NADS3.
However, for the mogt pat these reflect only very smal motions within the NADS3 frame. In
order to determine velocities of points within NADS83 based on velocities of corresponding ITRF
coordinates, one can write a more generd (i.e, time-dependent) transformation analogous to
equation (3.26):

(o at)s a()o @ 0 -Ri(t) Ra(t) ()0
I =)o) +ER) 0 -R)ZY()D
$2(1) a0 §T3()3 S2() 5 SR R O 27,

(3.31)

Taking the time-derivative and neglecting second- order terms, we find
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&r19 ®p -r3 R2° (

axo a6 ¢ T ax()s ¢ “ ex(t) 0
&y :éyi +8T2i+Dgy(t)E +¢R3 0 - Rligy(t)g . (332)
“Bvoss €% gT3— 8Z(t) - g- R2 R]_ 0 _8Z(t) [, -
e g e a

It is expected that most of the ITRF velocity associated with a point (the first term in equation
(3.32)) is cancelled by the plate motion, given by the lagt term, s0 that within NADS3 there is
essentidly no motion, only resdual motion due to locd effects. For example, those points near a
plate boundary (as is the case for points near the west coast of the U.S.)) have sgnificant motion
within NAD83 that is determined by the totd motion of ITRF minus the overdl plate motion
modd.

Recently, NGS updated all NAD83 coordinates of its CORS sations to the epoch 2002.0,
and used formula (3.32) to determine the corresponding NADS83 veocities. The following
procedure can be used to determine 2002.0 coordinates in NADS83 for any point, X, observed by
atic differentiadl GPS; see (Soler and Snay, 2004)° for details:

v |ERS

X(()ITRFOO) (1997'0) XCO@ XE)ITRFOO) (t)

5 (ITRF00) (t) = x(()'TRF @) (t) + DXgps (t)

Table 3.3

)(ITRFOO)(t) ® (X- X

0

«NADS3

X (() NAD83(CORS96)) (2002_ O) °® X (() NAD 83(CORS96) ) (t )

(NAD83(CORS96)) (t)

NAD83(CORS96)) (t) + ( )(NAD83(CORSQB)) ( t)

.

X 0

X- X,

o NAD83

 (NADB3(CORS96)) (t ) ® x(NADBI(CORS%) ( 2002_0)

where DX (t) represents the GPS observations at some epoch, t, relative to a CORS station,

X,. For an example of how the NAD83 and ITRFOO coordinates of points are related, see
Problem 3in Section 3.4.2.

2 soler, T. and R.A. Snay (2004): Transforming Positions and Velocities between the International Terrestrial
Reference Frame of 2000 and North American Datum of 1983. Journal of Surveying Engineering, 130(2), 49-55.
DOI: 10.1061/(ASCE)0733-9453(2004)130:2(49).
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34.2 Problems

1. @ Rigoroudy derive the approximation (3.17) from the exact formula (3.15) and clearly
date al approximations. Determine the error in coordinates of the point in Problem 3.1.2-2
when using (3.17) ingead of (3.15) for the parameters associated with the ITRF2000 —
NAD83(CORSS6) transformation.

b) Given the coordinates of a point in Columbus f =40°, | =-83°, h=200m, in the
NADS83(CORS86) frame, compute its coordinates in the ITRF89, as wdl as in the ITRF4,
based on the transformation parametersin Tables 3.2 and 3.3.

2. @ Which of the fdlowing reman invaiant in a 7-parameter Smilarity transformation
(3.15)?
i) chorddigance i) digance from origin; i) longitude

b) Answer 2.8) for each of the quantitieslisted incase R =1 (identity matrix) (be careful?).

3. Usng the web dte  http:/Mww.ngs.noaa.gov/CORSYMaps2005/mahtml, find the coordinate
data sheet of CORS dation Westford (WES2). Compute the NADS83 coordinates and velocity for
2002.0 from the ITRF00(1997.0) values and compare them to the values published by NGS. Do
the same for the CORS dation Point Loma 3 (PLO3), Southern Cdifornia, near the Mexican
border  (http://www.ngs.noaa.gov/CORSMaps2005/cad.html).  (Hint: use (3.32) to transform
from 1997.0 to 2002.0.)
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35 Vertica Datums

Nowadays, heights of points could be reckoned with respect to an dlipsoid; in fact, we have
dready introduced this height as the dlipsoidd height, h (Section 2.1.2). However, this height
does not correspond with our intuitive sense of height as a measure of vertical distance with
respect to a level surface. Two points with the same dlipsoidd height may be at different leves
in the sense that water would flow from one point to the other. Ellipsoidd heights are purely
geometric quantities that have no connection to gravity potentid; and, it is the gravity potential
that determines which way water flows. An unperturbed lake surface comes closest to a physicd
manifedaion of a leve surface and mean sea level (often quoted as a reference for heghts) is
a0 reasonably close to a level surface We may define a levd surface amply as a surface on
which the gravity potentid is congant. Discounting friction, no work is done in moving an
object dong a level surface; water does not flow on a leve surface; and dl points on a leve
aurface should be a the same height — a leadt, this is what we intuitivedly would like to
understand by heights. The geoid is defined to be that levd surface that closdly approximates
mean sea level (mean sea level deviates from the geoid by up to 2 m due to the varying pressure,
sinity, temperature, wind setup, etc, of the oceans). There is dill today consderable
controversy about the redizability of the geoid as a definite surface, and the definition given here
is correspondingly (and intentionaly) vague.

A veticd daum, like a horizonta datum, requires an origin, but being one-dimensond,
there is no orientation; and, the scale is inherent in the measuring gpparatus (leveling rods). The
origin is a point on the Earth's surface where the height is a defined vaue (eg., zero height a a
coadtal tide-gauge detion). This origin is obvioudy accesshle and sdtisfies the requirement for
the definition of a datum. From this origin point, heights (height differences) can be measured to
any other point usng dsandard leveling procedures (which we do not discuss further).
Traditiondly, a point & mean sea levd sarved as origin point, but it is not important what the
abolute gravity potentia is a this point, snce one is interesed only in height differences
(potentid differences) with respect to the origin.  This is completely andogous to the traditiond
horizontal datum, where the origin point (eg., located on the surface of the Eath) may have
arbitrary coordinates, and al other points within the datum are tied to the origin in a rdaive
way. Each verticd datum, being thus defined with respect to an arbitrary origin, is not tied to a
globd, internationally agreed upon, vertical datum. The latter, in fact, does not yet exis. Figure
3.4 shows the geometry of two loca vertical datums each of whose origin is a dation a mean sea
level. In order to transform from one verticd datum to another requires knowing the gravity
potentia difference between these origin points.  This difference is not zero because mean sea
level is not exactly a level surface; differences in height between the origins typicdly are severd
decimeters.

Geometric Reference Systems 3-26 Jekeli, December 2006



P Q

A B
Hp P, Qc/_w

—_ g N
vertical datumA Mean Sea L evel ~ vertical datum B

dlipsoid
Figure 3.4. Two vertica datums with respect to mean sealevd.

The heights that are measured and belong to a particular vertical datum ultimately are defined
by differences in gravity potentia with respect to the origin point. There are a number of options
to scae the geopotentia difference so that it represents a height difference (that is, with distance
units). The mogt naturd height (but not necessarily the most redizable height from a theoretica
viewpoint) is the orthometric height, H, defined as the distance dong the (curved) plumb line
from the levd surface through the datum origin to the point in question. With sufficient
accuracy, we may neglect the curvature of the plumb line and approximate the orthometric
height as a distance along the elipsoidal norma. Anaogousto Figure 3.2, we then have

H=h-N, (3.34)

where N is the digance from the dlipsoid to the level surface through the origin point. This is
the geoid undulation only if the geoid passes through the origin point. Otherwise it is the geoid
undulation plus the offset of the geoid from the origin point.

For North America, the National Geodetic Vertical Datum of 1929 (NGVD29) served both
the U.S. and Canada for vertica control until the late 1980's. The origin of NGVD29 was
actudly based on severd defined heights of zero a 21 coastal (mean sea level) tide-gauge
gations in the U.S. and 5 in Canada. This caused digtortions in the network since, as noted
above, mean sea levd is not a level surface. Additiond digtortions were introduced because
levdled heights were not corrected rigoroudy for the non-padldism of the levd surfaces. In
1988 a new vetica daum was introduced for the U.S, Canada, and Mexico, the North
American Vertical Datum of 1988 (NAVDS88). Its origin is a sngle dation with a defined height
(not zero) at Pointe-au-Pére (Father's Point), Rimouski, Québec. This diminated the theoretica
problem of defining a proper origin based on a dsngle level surface.  Also, the levded heights
were more rigoroudy corrected for the non-padldism of the leve surfaces. The origin point for
NAVDS88 coincides with the origin point for the International Great Lakes Datum of 1985
(IGLD85).
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Chapter 4
Celestial Reference System

Ultimately the orientation of the terrestrial reference system istied to an astronomic system, asit
has always been throughout history. The astronomic reference system, or more correctly, the
celestial reference system is supposed to be an inertial reference system in which our laws of
physics hold without requiring corrections for rotations. For geodetic purposes it serves as the
primal reference for positioning since it has no dynamics. Conversely, it isthe system with respect
to which we study the dynamics of the Earth as arotating body. And, finally, it serves, of course,
also as areference system for astrometry.

We will study primarily the transformation from the celestial reference frame to the terrestrial
reference frame and this requires some understanding of the dynamics of Earth rotation and its
orbital motion, as well as the effects of observing celestial objects on a moving and rotating body
such asthe Earth. The definition of the celestial reference system was until very recently (1998), in
fact, tied to the dynamics of the Earth, whereas, today it is defined as being almost completely
independent of the Earth. The change in definition is as fundamental as that which transferred the
origin of the regional terrestrial reference system (i.e., the horizontal geodetic datum) from a
monument on Earth’s surface to the geocenter. It is, as always, a question of accessibility or
realizability. Traditionaly, the orientation of the astronomic or celestial reference system was
defined by two naturally occurring direction in space, the north celestial pole, basically defined by
Earth’s spin axis (or closeto it), and the intersection of the celestial equator with the ecliptic, i.e., the
vernal equinox (see Section 2.2). Once the dynamics of these directions were understood, it was
possible to define mean directions that are fixed in space and the requirement of an inertial
reference system was fulfilled (to the extent that we understand the dynamics). The stars provided
the accessibility to the system in the form of coordinates (and their variation) as given in a
fundamental catalog, which is then the celestial reference frame. Because the defining directions
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(the orientation) depend on the dynamics of the Earth (within the dynamics of the mutually
attracting bodiesin our solar system), even the mean directions vary slowly intime. Therefore, the
realization of the system included an epoch of reference; i.e., a specific time when the realization
held true. For any other time, realization of the frame required transformations based on the motion
of the observable axes, which in turn required a dynamical theory based on a fundamental set of
constants and parameters. All thiswas part of the definition of the celestia reference system.

On the other hand, it is known that certain celestial objects, called quasars (quasi-stellar
objects), exhibit no perceived motion on the celestial sphere due to their great distance from the
Earth. These are dso naturally occurring directions, but they have no dynamics, and as such would
clearly be much preferred for defining the orientation of the celestial system. The problem was
their accessibility and hence the realizability of the frame. However, a solid history of accurate,
very-long-baseline interferometry (VLBI) measurements of these quasars has prompted the re-
definition of the celestial reference system as one whose orientation is defined by a set of quasars.
In this way, the definition has fundamentally changed the celestial reference system from a
dynamic system to a kinematic system! The axes of the celestial reference system are still (close
to) the north celestial pole and vernal equinox, but are not defined dynamically in connection with
Earth’ s motion, rather they are tied to the defining set of quasars whose coordinates are given with
respect to these axes. Moreover, there is no need to define an epoch of reference, because
(presumably) these directions will never changein inertial space (at least in the foreseeable future of
mankind).

The IERS International Celestial Reference System (ICRS), thus, is defined to be an inertial
system (i.e., non-rotating) whose first and third mutually orthogonal coordinate axes (equinox and
pole) are realized by the coordinates of 608 compact extra-gal actic sources (quasars), as chosen by
the Working Group on Reference Frames of the International Astronomical Union (IAU); see
Feissel and Mignard (1998)1. Of these, 212 sources define the orientation, and the remainder are
candidates for additional ties to the reference frame. The origin of the ICRS is defined to be the
center of mass of the solar system (barycentric system) and is realized by observations in the
framework of the theory of general relativity.

The pole and equinox of the ICRS are supposed to be close to the mean dynamical pole and
equinox of J2000.0 (Julian date, 2000, see below). Furthermore, the adopted pole and equinox for
ICRS, for the sake of continuity, should be consistent with the directions realized for FK5, whichis
the fundamental catalogue (fifth version) of stellar coordinates that refers to the epoch J2000.0 and
served as realization of apreviously defined celestial reference system. Specifically, the origin of
right ascension for FK5 was originally defined on the basis of the mean right ascension of 23 radio
sources from various catal ogues, with the right ascension of one particular source fixed to its FK4
value, transformed to J2000.0. Similarly, the FK5 pole was based on its J2000.0 direction defined
using the 1976 precession and 1980 nutation series (see below). The FK5 directions are estimated

1 Feissel, M. and F. Mignard (1998): The adoption of ICRS on 1 January 1998: Meaning and consequences.
Astron. Astrophys., 331, L33-L36.
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to be accurate to +50 milliarcsec for the pole and £80 milliarcsec for the equinox; and, it is now
known, from improved observations and dynamical models (McCarthy, 19962, McCarthy and
Petit, 20033), that the ICRS pole and equinox are close to the mean dynamical equinox and pole
of J2000.0, well within these tolerances. Thus, the definition of the ICRS origin of right ascension
and pole are only qualitative in respect to FK5 — fundamentally they are defined to be kinematic
axes fixed by a set of quasars. The precise transformation to a dynamical system, such as defined
by modern theories, is briefly discussed in Section 4.1.3.

The realization of the ICRS, the International Celestial Reference Frame (ICRF) is
accomplished with VLBI measurements of the quasars; and, as observations improve the orientation
of the ICRF will be adjusted so that it has no net rotation with respect to previous realizations
(analogous to the ITRF). The main realization of the ICRS is through the Hipparcos catal ogue,
based on recent observations of some 120,000 well-defined stars using the Hipparcos (High
Precision Parallax Collecting Satellite), optical, orbiting telescope. This catalogue is tied to the
ICRF with an accuracy of 0.6 mas (milliarcsec) in each axis.

4.1 Dynamics of the Pole and Equinox

Despite the simple, kinematic definition and realization of the ICRS, we do live and operate on a
dynamical body, the Earth, whose naturally endowed directions (associated with its spin and orbital
motion) in space vary due to the dynamics of motion according to gravitational and geodynamical
theories. Inasmuch as we observe celestial objectsto aid in our realization of terrestrial reference
systems, we need to be able to transform between the | CRF and the ITRF, and therefore, we need to
understand these dynamicsto the extent, at least, that allows us to make these transformations.
Toward this end, we need, first of all, to define a system of time (since the theoretica description
of dynamicsinherently requiresit). We call the relevant time scale the Dynamic Time, referring to
the time variable in the equations of motion describing the dynamical behavior of the mass bodies
of our solar system. Rigoroudy (with respect to the theory of general relativity), the dynamic time
scale can refer to a coordinate system (coordinate time) that is, for example, barycentric (origin at
the center of mass of the solar system) or geocentric, and is thus designated barycentric coordinate
time (TCB) or geocentric coordinate time (TCG); or, it refersto aproper time, associated with the
frame of the observer (terrestrial dynamic time (TDT), or barycentric dynamic time (TBD)); see
Section 5.3 on further discussions of the different dynamical time scales. The dynamic time scale,
based on proper time, is the most uniform that can be defined theoretically, meaning that the time
scalein our local experience, as contained in our best theories that describe the universe, is constant.
Dynamic time is measured in units of Julian days, which are close to our usual days based on

2 McCarthy, D.D. (ed.) (1996): |IERS Conventions (1996). |IERS Tech. Note 21, Observatoire de Paris, Paris.

3 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval
Observatory, Bureau International des Poids et Mesures.
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Earth rotation, but they are uniform; whereas, solar days (based on Earth rotation) are not, for the
simple reason that Earth rotation is not uniform. The origin of dynamic time, designated by the
Julian date, JO.0, is defined to be Greenwich noon, 1 January 4713 B.C. Julian days, by definition,
start and end when it is noon (dynamical time) in Greenwich, England. Furthermore, by definition,
there are exactly 365.25 Julian days in a Julian year, or exactly 36525 Julian days in a Julian
century. With the origin as given above, the Julian date, J1900.0, corresponds to the Julian day
number, JD2,415,021.0, being Greenwich noon, 1 January 1900; and the Julian date, J2000.0,
corresponds to the Julian day number, JD2,451,545.0, being Greenwich noon, 1 January 2000 (see
Figure 4.1). We note that Greenwich noon represents mid-day in our usual designation of days
starting and ending at midnight, and so JD2,451,545.0 isalso 1.5 January 2000. Continuing with
this scheme, 0.5 January 2000 is really Greenwich noon, 31 December 1999 (or 31.5 December
1999).

36525 Julian days

/\

' N
JD2,433,282 JD2,469,807
I I I I I I
Jan05 Janl5 ... Dec 30.5 Jan 0.5

1950 1950 2049 2050
= noon = noon
Dec 31 Dec 31
1949 2049

Figure 4.1: One Julian century.

An epoch is an instant in time (as opposed to a time interval which is the difference between
two epochs). We need to define three epochs, asfollows:

ty: thefundamental or basic epoch for which the values of certain constants and parameters are
defined that are associated with the dynamical theories of the transformation (previoudly, the

reference system).

t: the epoch of date, being the current or some other time at which the dynamics should be
realized (e.g., the time of observation).

te: an epoch that is fixed and arbitrary, representing another epoch with respect to which the
theory could be devel oped.

The distinction between ty and tg isamatter of convenience, where t, always refers to the epoch
for which the constants are defined.
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411 Precession

The gravitational interaction of the Earth with the other bodies of the solar system, including
primarily the moon and the sun, but also the planets, cause Earth’s orbital motion to deviate from
the smple Keplerian model of motion of two point massesin space. Also, because the Earth is not
a perfect homogeneous sphere, its rotation is affected likewise by the gravitational action of the
bodies in the solar system. If there were no other planets (only the Earth/moon system) then the
orbit of the Earth/moon system around the sun would be essentially a plane fixed in space. This
plane defines the ecliptic (see also Section 2.3.2). But the gravitational actions of the planets causes
this ecliptic plane to behave in adynamic way, called planetary precession.

If the obliquity of the ecliptic (Section 2.3.2) were zero (or the Earth were not flattened at its
poles), then there would be no gravitational torgques due to the sun, moon, and planets acting on the
Earth. Butsince e#0 and f# 0, the sun, moon, and planets do cause a precession of the equator
(and, hence, the pole) that is known as luni-solar precession and nutation, depending on the
period of the motion. That is, the equatorial bulge of the Earth and its tilt with respect to the ecliptic
allow the Earth to be torqued by the gravitational forces of the sun, moon, and planets, since they all
lie approximately on the ecliptic. Planetary precession together with [uni-solar precession is known
as general precession.

The complex dynamics of the precession and nutation is a superposition of many periodic
motions originating from the myriad of periods associated with the orbital dynamics of the
corresponding bodies. Smooth, long-period motion is termed luni-solar precession, and short-
periodic (up to 18.6 years) is termed nutation. The periods of nutation depend primarily on the
orbital motion of the moon relative to the orbital period of the Earth. The most recent models for
nutation also contains short-periodic effects due to the relative motions of the planets.

We distinguish between precession and nutation even though to some extent they have the same
sources. In fact, the most recent models (2000) combine the two, but for historical and didactic
purposes we first treat them separately. Since precession is associated with very long-term motions
of the Earth’s reference axes in space, we divide the total motion into mean motion, or average
motion, that is due to precession and the effect of short-period motion, due to nutation, that at a
particular epoch describes the residual motion, so to speak, with respect to the mean. First, we
discuss precession over an interval of time. The theory for determining the motions of the reference
directions was developed by Simon Newcomb at the turn of the 20th century. Its basisliesin
celestial mechanics and involves the n-body problem for planetary motion, for which no analytical
solution has been found (or exists). Instead, iterative, numerical procedures have been developed
and formulated. We can not give the details of this (see, e.g., Woolard, 1953%), but can only

4 Woolard, E.W. (1953): Theory of the rotation of the Earth around its center of mass. Nautical Almanac Office,
U.S. Naval Observatory, Washington, D.C.
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sketch some of the results.

In the first place, planetary precession may be described by two angles, 77, and /1, , where the
subscript, A, refers to the “accumulated” angle from some fixed epoch, say ty, to some other
epoch, say t. Figure 4.2 shows the geometry of the motion of the ecliptic due to planetary
precession from ty tot, as described by the angles, 1, and /7,. The pictured ecliptics and
eguator are fictitious in the sense that they are affected only by precession and not nutation, and as
such are called “mean ecliptic’ and “mean equator”. The angle, 11, is the angle between the
mean ecliptics at ty and t; while /7, isthe ecliptic longitude of the axis of rotation of the ecliptic
due to planetary precession. The vernal equinox at t, isdenoted by Y.

- Tip
mean ecliptic at t /

™ mean equator at t

Figure 4.2: Planetary precession.

Theangles, 17, and /7,, can be expressed as time series where the coefficients are based on the
celestial dynamics of the planets. Usually, the series are given in the form:

SiNTT, SN, = S (t—tg) +Sq (t—tg) >+ Sp (t—to) > + ...,
(4.0
Sin7T, coslT, = € (t—tg) + C; (t—tg) 2+ Co(t—tg) 3+ ...

The epoch about which the series is expanded could also be tg, but then the coefficients would
obviously have different values. Seidelmann (1992, p.104)° gives the following series; see also
Woolard, 1953, p.445):

5 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.

6 Woolard, E.W. (1953): Theory of the rotation of the Earth around its center of mass. Nautical Almanac Office,
U.S. Naval Observatory, Washington, D.C.
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7T, SiNf, = (4.1976 — 0.75250 T + 0.000431 T2) 7+

(0.19447 + 0.000697 T) 72— 0.000179 7° [arcsec] ,
(4.2)
T, oS/, = (—46.8150 — 0.00117 T + 0.005439 T?) 7+

(0.05059 — 0.003712 T) 72 + 0.000344 1° [arcseq]

where the units associated with each numerical coefficient are such that the resulting term has units
of arcsec, and thetime variables, T and 7, are defined by

te—tg -t
~36525° | 36525

(4.3)

The epochs, tg, tg, and t, are Julian dates given in units of Julian days; therefore, T and 7 are
intervals of Julian centuries. Alternatively, if Tand 17 are interpreted as unitless quantities, then
each of the coefficientsin (4.2) has units of [arcsec], which isthe method of expression often given.

The luni-solar precession depends on the geophysical parameters of the Earth. No analytic
formula based on theory is available for this due to the complicated nature of the Earth’ s shape and
internal congtitution. Instead, Newcomb gave an empirical parameter, (now) called Newcomb’s
precessional constant, Py, based on observed rates of precession. In fact, this“constant” rate is
not strictly constant, as it depends dightly on time according to

PN = Po + Pl (t - to) , (44)

where P; =—0.00369 arcsec/century (per century) is due to changes in eccentricity of Earth's
orbit (Lieske et a., 1977, p.10)’. Newcomb's precessional constant depends on Earth’s
moments of inertia and enters in the dynamical equations of motion for the equator due to the
gravitational torques of the sun and moon. It is not accurately determined on the basis of
geophysical theory, rather it is derived from observed general precession rates. It describes the
motion of the mean equator along the ecliptic according to the rate:

=Py cosgy—Py , (4.5

where &, is the obliquity of the ecliptic at t, and Py is a general relativistic term called the
geodesic precession. The accumulated angle in luni-solar precession of the equator along the
eclipticisgivenby ¢, .

Figure 4.3 shows the accumulated angles of planetary and luni-solar precession, as well as

7 Lieske, JH., T. Lederle, W. Fricke, and B. Morando (1977): Expressions for the Precession quantities based
upon the IAU (1976) system of astronomical constants. Astron. Astrophys., 58, 1-16.
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general precession (in longitude). The precession angles, as given in this figure, describe the
motion of the mean verna equinox as either along the mean ecliptic (the angle, ¢, , due to motion
of the mean equator, that is, luni-solar precession), or along the mean equator (the angle, x5, dueto
motion of the mean ecliptic, that is, planetary precession). The accumulated general precessionin
longitude is the angle, as indicated, between the mean vernal equinox at epoch, ty, and the mean
vernal equinox at epoch, t. Even though (for relatively short intervals of severa years) these
accumulated angles are small, we see that the accumulated general precession is not simply an angle
in longitude, but motion due to a compounded set of rotations.

mean eclipticat t

mean ecliptic at t

mean equator at t 0

/

mean equator at t

Figure 4.3: General precession = planetary precession + luni-solar precession.

It is easier to formulate the relationships between the various types of precession by considering
the limits of the accumulated angles as the time interval goes to zero, that is, by considering the
rates. Following conventional notation, we denote rates by the corresponding un-subscripted
angles:.

_
T odt

_ Y

; L’U_W
t=t,

_dpp

v P= ot (4.6)

t=t, t=t,

From Figure 4.3, we thus have the following relationship between the precession rates (viewing the
geometry of the accumulated motions in the differential sense):

p=y-xcosg, , 4.7)

where the second term is merely the projection of the planetary precession onto the ecliptic. Now,
applying the law of sinesto the spherical triangle MPY" in Figure 4.3, we find
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Siny, SiN(180° — &) = sin, sinf,
(4.8)
0 XaSINE=SINTT SINM, .

Substituting the first equation in (4.1) and taking the time derivative according to (4.6), we have for
therate in planetary precession

s
sing,

X= ) (4.9)

where second-order terms (e.g., due to variation in the obliquity) are neglected. Putting (4.9) and
(4.5) into (4.7), therate of general precession (in longitude) is given by

p = Py cosg, — Py—scotg . (4.10)

More rigorous differential equations are given by Lieske et d. (1977, p.10, ibid.).

Equation (4.10) shows that Newcomb'’s precessional constant, Py, is related to the general
precession rate; and, thisis how it is determined, from the observed rate of general precession at
epoch, to. Thisobserved rate was one of the adopted constants that constituted the definition of the
celestial reference system when it was defined dynamically. The other constantsincluded P; (the
time dependence of Newcomb's constant), P, (the geodesic precession term), &, (the obliquity at
epoch, tg ), and any other constants needed to compute the coefficients, s, s, ¢, ¢, , on the basis of
planetary dynamics. Once these constants are adopted, all other precessional parameters can be
derived.

Therate of general precession in longitude can also be decomposed into rates (and accumulated
angles) in right ascension, m, and declination, n. From Figure 4.4, we have the accumulated
genera precession in declination, n,, and in right ascension, my :

NA= YaSiNgy,
(4.12)
M = (U COSEG— Xp s
and, in terms of rates:
n=ysng,,
(4.12)

M= (cosey— X -
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Finally, the rate of genera precession in longitude isthen also given by:

p=mcosg, +nsing, . (4.13)

mean eclipticat t

/

mean equator at t

Figure 4.4: General precession in right ascension and declination.

Therate, n, (and accumulated angle, n, ) is one of three precessional elements that are used to
transform from the mean pole and equinox at ty (or some other fundamental epoch) to the mean
pole and equinox at some other epoch, t. The accumulated general precession in declination isalso
designated, 8, . Instead of the accumulated angle in right ascension, m,, as defined above, two
other precessional elements are used that facilitate the transformation. Referring to Figure 4.5,
showing also the result of general precession, but now just in terms of motions of the pole and
equinox, we define two angles, z, and {,, inright ascension. The mean pole, Z,, at epoch, tg,
moves as a result of general precession to its position, Z, at epoch, t; and the connecting great
circlearc clearly isthe accumulated general precession in declination. The general precession rate
in right ascension can be decomposed formally into rates along the mean equator at epoch, t, and
along the mean equator at adifferentia increment of time later:

m=C+z. (4.14)

We seethat the great circle arc, Z,?() , intersects the mean equator of tg at right angles because
it is an hour circle with respect to the pole, Z,; and it intersects the mean equator of t at right
angles because it is also an hour circle with respect to the pole, Z. Consider a point on the celestia
sphere. Let its coordinates in the mean celestial reference frame of ty be denoted by (a,, Jy) and
in the mean frame at epoch, t, by (a,,, J,) . Intermsof unit vectors, let
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COSQ, COSJ, cosQ,,,COSd,,

ro=| sinapcosd, |; rym=| sina,,cosg, | . (4.15)
sing, sing,,

Then, with the angles as indicated in Figure 4.5, we have the following transformation between the
two frames:

'm=Ra(=2zp) Ry(+ 64) Ry(=p) 1o
(4.16)
=P ro ,

where P is called the precession transformation matrix. Again, note that thisis a transformation
between mean frames, where the nutations have not yet been taken into account.

\ ascending node
of the equator

mean equator at t

Figure 4.5: Precessional elements.

Numerical values for the precessional constants, as adopted by the International Astronomical
Union in 1976, are given by
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p =5029.0966 arcsec/Julian century
P; =-0.00369 arcsec/Julian century

(4.17)
Pg =1.92 arcsec/Julian century

£9=23°26'21.448" .

and refer to the fundamental epoch, ty=J2000.0. Based on these, the following series expressions
are given by Seidelmann (1992, p.104)8 for the various precessiona quantities and elements:

T, = (47.0029 — 0.06603 T + 0.000598 T2) T+

) . (4.18a)
(- 0.03302 + 0.000598 T) 72 + 0.000060 7° [arcsec] ,
1, = 174° 52' 34.982" + 3289.4789 T + 0.60622 T* + .18
(- 869.8089 — 0.50491 T) 7+ 0.03536 72 [arcsed] , '
W, = (5038.7784 + 0.49263 T —0.000124 T?) 7+ @180
.1oC
(- 1.07259 — 0.001106 T) 7°—0.001147 7° [arcseq] ,
Xa = (10.5526 — 1.88623 T + 0.000096 T?) 7+ (2150
(- 2.38064 — 0.000833 T) 72— 0.001125 7° [arcseq] '
pa = (5029.0966 + 2.22226 T—0.000042 T?) T+ @150
loe
(1.11113 - 0.000042 T) 72— 0.000006 7°> [arcsed] ,
{,=(2306.2181 + 1.39656 T—0.000139 T?) T+ (2,180
(0.30188 — 0.000344 T) 72+ 0.017998 1° [arcsec] , '
z5 = (2306.2181 + 1.39656 T —0.000139 T?) 7+
(4.189g)

(1.09468 + 0.000066 T) 72+ 0.018203 ° [arcsec] ,

8 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.
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6, = (2004.3109 — 0.85330 T— 0.000217 T?) 7+

4.18h
(- 0.42665 — 0.000217 T) 7°—0.041833 7° [arcseq] , (4.180)

Ep= 23°26' 21.448" —46.8150 T + 0.00059 T2+0.001813 T3 + (4.18i)

(— 46.8150 — 0.00117 T + 0.005439 T?) 7+ (— 0.00059 + 0.005439 T) 12 +
0.001813 7° [arcsec] ,

where, as before, the numerical coefficients have units consistent with the final result being in units
of arcsec, and where T and 7 are given by (4.3). The series (4.18a-1) are expansions with respect
to an arbitrary (but fixed) epoch, tg, but based on the precessional constantsvalid for ty. If we set
tg =tg, then, of course, T=0, and 7= (t—1tp)/36525.

If, for the sake of convenience, we do set tg = t;, then we see that the coefficient of 7 in these
series represents the rate of the corresponding precessional element at t=t, (i.e., 7=0). For
example,

a7 WYa =5038.7784 arcsec/Julian century
0

(4.29)
=50 arcseclyear ,

which is the rate of luni-solar precession, causing the Earth’s spin axis to precess with respect to
the celestial sphere and around the ecliptic pole with a period of about 25,800 years. The luni-solar
effect is by far the most dominant source of precession. We see that the rate of change in the
obliquity of the ecliptic is given by

qréA =—46.8150 arcsec/Julian century
0

(4.20)
=—-0.47 arcseclyear ;

and the rate of the westerly motion of the equinox, due to planetary precession, is given by
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o(lj rXA =10.5526 arcsec/Julian century
=0

(4.22)
=0.11 arcseclyear .

Note that these rates would change with differently adopted precessiona constants.

412 Nutation

Up to now we have considered only what the dynamics of the pole and equinox are in the mean
over longer periods. The nutations describe the dynamics over the shorter periods. Also, for
precession we determined the motion of the mean pole and mean equinox over an interval, from t,
tot. The transformation due to precession was from one mean frame to another mean frame. But
for nutation, we determine the difference between the mean position and the true position for a
particular (usually the current) epoch, t (also known as the epoch of date). The transformation
due to nutation is one from a mean frame to atrue frame at the same epoch. Since we will deal with
true axes, rather than mean axes, it isimportant to define exactly the polar axis with respect to which
the nutations are computed (as discussed later, we have a choice of spin axis, angular momentum
axis, and “figure” axis). Without giving a specific definition at this point (see, however, Section
4.3.2), we state that the most suitable axis, called the Celestial Ephemeris Pole (CEP),
corresponding to the angular momentum axis for free motion, being aso close to the spin axis,
represents the Earth’ s axis for which nutations are computed.

Recall that nutations are due primarily to the luni-solar attractions and hence can be modeled on
the basis of a geophysica model of the Earth and its motions in space relative to the sun and moon.
The nutations that we thus define are also called astronomic nutations. The transformation for the
effect of nutation is accomplished with two angles, As and Ay, that respectively describe (1) the
change (from mean to true) in thetilt of the equator with respect to the mean ecliptic, and (2) the
change (again, from mean to true) of the equinox along the mean ecliptic (see Figure 4.6). We do
not need to transform from the mean ecliptic to the true ecliptic, since we are only interested in the
dynamics of the true equator (and by implication the true pole). The true vernal equinox, Yy, is
always defined to be on the mean ecliptic.
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mean ecliptic at t

AN

A sing mean equator at t

N\ true equator at t
Figure 4.6: Nutational elements.

With respect to Figure 4.6, it is seen that Ay isthe nutation in longitude. It is due mainly to
the ellipticities of the Earth’s and moon’s orbits, causing non-uniformity in the luni-solar
precessional effects. The nutation in obliquity, Ae, is due mainly to the moon’s orbital plane
being out of the ecliptic (by about 5.145 degrees). Models for the nutation angles are given in the
form

n n
As= 2 C;cosA;, Ap= 2 SsSnA; (4.22)
i=1 i=1

wherethe angle
Ai =ai€ +bi€' +CiF+diD +eiQ (423)

represents a linear combination of fundamental arguments, being combinations of angles, or
ecliptic coordinates, of the sun, moon (and their orbital planes) on the celestial sphere. The
multipliers, a;, ..., €; , correspond to different linear combinations of the fundamental arguments and
describe the corresponding periodicities with different amplitudes, C; and §. The reader is
referred to (Seidelmann, 1992, p.112-114)° for the details of these nutation series. Table 4.1
below gives only some of these terms; there are 97 more with lower magnitudes. 1 is given by
(4.3) with tp =tg:

=ty

T= 36525

(4.24)

in Julian centuries, where ty = J2000.0, and t is the Julian date in units of Julian days.

9 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.
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Table4.1: Some terms of the series for nutation in longitude and obliquity,
referred to the mean ecliptic of date (1980 IAU theory of nutation).

period [days]

6798.4 —171996
3399.2 2062
182.6 -13187
365.3

121.7

13.7 2274
27.6

13.6 -386
9.1 -301

S [10_4arcsec]

1742 1
02r
1671
34T
1271
0271
01r
0471

G [10_4arcsec]

92025
—895
5736

54
224
977

-/
200
129

89r
0571
3171
-01r1
06T
0571

* T isgiven by (4.24).

The 1980 IAU theory of nutation is based on a non-rigid Earth model and the resulting series
replaces the previous nutation series by Woolard of 1953. The predominant terms in the nutation
series have periods of 18.6 years, 0.5 years, and 0.5 months as seen in Table 4.1. Figure 4.7
depicts the motion of the pole due to the combined luni-solar precession and the largest of the
nutation terms. This diagram also shows the so-called nutational ellipse which describes the
extent of the true motion with respect to the mean motion. The “semi-axis’ of the ellipse, that is
orthogonal to the mean motion, isthe principal term in the nutation in obliquity and is aso known
as the constant of nutation. The values for it and for the other “axis’, given by Ay sine (Figure
4.6), can beinferred from Table 4.1. The total motion of the pole (mean plus true) on the celestial
sphere, of course, is due to the superposition of the general precession and al the nutations.
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luni-solar
.~~~ precession

mean motion of CEP

mean Ae, constant of
ecliptic nutation = 9.2”
pole

nutational
elipse

true motion of CEP

186yr=6.2

Figure 4.7: Luni-solar precession and nutation.

The transformation at the current epoch (epoch of date) from the mean frame to the true frame
accounts for the nutation of the CEP. Referring to Figure 4.6, we see that this transformation is
accomplished with the following rotations:

r= Rl(— E—AE)) Rg(—Aw) Rl(g) Mm

(4.25)
=Nrp,
where ¢ isthe mean obliquity at epoch, t, and
COSa COSO
r=| sina cosd (4.26)
sind
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is the vector of coordinatesin the true frame at the current epoch. The combined transformation
due to precession and nutation from the mean epoch, t,, to the current epoch, t, is given by the
combination of (4.16) and (4.25):

r=NPrg . (4.27)

Approximate expressions for the nutation matrix, N, can be formulated since As and Ay are small
angles (Seidelmann, 1992, p.120)19; in particular, they may be limited to just the principal (largest
amplitude) terms, but with reduced accuracy. A new convention for the transformation (4.27) was
recently (2003) adopted by the IERS and is discussed in Section 4.1.3.

Finaly, it is noted that more recent data from VLBI has made the 1980 nutation series
somewhat obsolete for very precise work. An improved nutation series — the IERS 1996 Series
(McCarthy, 1996)11 was developed, but until recently the IERS officially used the IAU 1980
theory and series, publishing corrections (“celestial pole effects’) in the form of differential
elementsin longitude, dAy, and obliquity, dAe, that should be added to the elements implied by
the 1980 nutation series:

A= AY(IAU 1980) + dAy,
(4.28)
Ae= Ag(IAU 1980) + dAe .

The theory has also been expanded to include the nutations due to the planets (yielding effects of
the order of 0.001—0.0001 arcsec). The series are given by Seidelmann (1992, ibid.), also by
McCarthy (1996, ibid.), and would be used for required accuracies of + 1 mas.

In 2003, the IAU1976 precession and IAU 1980 nutation models were replaced by new
precession-nutation model, IAU 2000, based on the work of Mathews et al. (2002)12. This
extremely accurate models nevertheless still require some small corrections (“celestial pole
offsets’) based on current VLBI observations. They are published by the IERS as part of the
Earth Orientation Parameters and are applied similarly asin (4.28) (see dso Section 4.1.3).

4.1.3 New Conventions

The method of describing the motion of the CEP on the celestial sphere according to precession
and nutation, as given by the matrices in equations (4.16) and (4.25), has been critically anayzed by

10 seidelmann, PK. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.

1 McCarthy, D.D. (ed.) (1996): IERS Conventions (1996). IERS Tech. Note 21, Observatoire de Paris, Paris.

12 Mathews, P.M., T.A. Herring, and B.A. Buffett (2002): Modeling of nutation-precession: New nutation series
for nonrigid Earth, and insights into the Earth’ s interior. J. Geophys. Res., 107(B4), 10.1029/2001JB000390.

Geometric Reference Systems 4-18 Jekeli, December 2006



astronomers, in particular by N. Capitaine (Capitaine et al., 198613, Capitaine, 199014) at the Paris
Observatory. Several deficienciesin the conventions were indicated especially in light of new and
more accurate observations and because of the new kinematical way of defining the Celestial
Reference System (CRS). Specifically, the separation of motions due to precession and nutation
was considered artificial since no clear distinction can be made between them. Also, with the
kinematical definition of the Celestial Reference System, there is no longer any reason to use the
mean vernal equinox on the mean ecliptic as an origin of right ascensions. In fact, doing so imparts
additional rotations to right ascension due to the rotation of the ecliptic that then must be corrected
when considering the rotation of the Earth with respect to inertial space (Greenwich Sidereal Time,
or the hour angle at Greenwich of the vernal equinox, see Section 2.3.4; see also Section 5.2.1).
Similar “imperfections” were noted when considering the relationship between the CEP and the
terrestria reference system, which will be addressed in Section 4.3.1.1.

In 2000 the International Astronomical Union (IAU) adopted a set of resolutions that precisely
adhered to a new, more accurate, and ssimplified way of dealing with the transformation between the
celestial and terrestrial reference systems. The IERS, in 2003, similarly adopted the new methods
based on these resolutions!®. Part of these new conventions concerns revised definitions of the
Celestial Ephemeris Pole (CEP) and the origins for right ascensions and terrestrial longitude in the
intermediate frames associated with the transformations between the Celestial and Terrestrial
Reference Systems. The new definitions were designed so as to ensure continuity with the
previously defined quantities and to eliminate extraneous residual rotations from their realization.
These profoundly different methods and definitions simplify the transformations and solidify the
paradigm of kinematics (rather than dynamics) upon which the celestial reference system is based.
On the other hand the new transformation formulas tend to hide some of the dynamics that lead up
to their development.

In essence, the position of the (instantaneous) pole, P, on the celestial sphere at the epoch of
date, t, relative to the position at some fundamental epoch, t, , can be described by two coordinates
(very much like polar motion coordinates, see Section 4.3.1) in the celestial system defined by the
reference pole, Py, and by the reference origin of right ascension, 5, as shown in Figure 4.8. In
this figure, the pole, P, is displaced from the pole, Py, and has celestial coordinates, d (co-
declination) and E (right ascension). The true (instantaneous) equator (the plane perpendicular to
the axis through P) at time, t, intersects the reference equator (associated with Py) at two nodes
that are 180° apart. The hour circle of the node, N, is orthogonal to the great circle arc PyP;
therefore, the right ascension of the ascending node of the equator is 90° plus the right ascension
of the instantaneous pole, P. The origin for right ascension at the epoch of date, t, is defined

13 Capitaine, N., B. Guinot, and J. Souchay (1986): A non-rotating origin on the instantaneous equator -
definition, properties, and use. Celestial Mechanics, 39, 283-307.

14 Capitaine, N. (1990): The celestia pole coordinates. Celes. Mech. Dyn. Astr., 48, 127-143.

15 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. |IERS Technical Note 32, U.S. Naval
Observatory, Bureau International des Poids et Mesures.
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kinematically under the condition that there is no rotation rate in the CRS about the pole due to
precession and nutation. This is the concept of the so-called non-rotating origin (NRO) that is
now also used to define the origin for longitudes (see Section 4.3.1.1). This origin for right
ascensions on the instantaneous equator is now called the Celestial Ephemeris Origin (CEO),
denoted o in Figure 4.8.

Rather than successive transformations involving precessional elements and nutation angles, the
transformation is more direct in terms of the coordinates, (d,E) , and the additional parameter, s,
that defines the instantaneous origin of right ascensions:

r=Q'ry, (4.29)
where
Q' = Ry(—9) Ry(—E) Ry(d) R3(E) , (4.30)

which is easily derived by considering the successive rotations as the origin point transforms from
the CRS origin, 2, to o (Figure 4.8). Equation (4.29) essentially replaces equation (4.27), but
also incorporates the new conventions for defining the origin in right ascension. Later (in Section
5.2.1) we will see the relationship to the previously defined transformation. We adhere to the
notation used in the IERS Conventions 2003 which defines the transformation, Q, as being from
the system of the instantaneous pole and origin to the CRS.
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Po (reference pole)

. 4
instantaneous ,’p
pole ’

Figure 4.8: Coordinates of instantaneous pole in the celestial reference system.

It remains to determine the parameter, s. Thetotal rotation rate of the pole, P, in inertial space
is due to changes in the coordinates, (d,E) , and in the parameter, s. Defining three non-colinear
unit vectors, ng, ¢, n, essentially associated with these quantities, as shown in Figure 4.8, we may
express the total rotation rate asfollows:

©=ngE+¢d-n(E+s), (4.31)
where the dots denote time-derivatives. Now, sis chosen so that the total rotation rate, @, has no
component along n. That is, s defines the origin point, o, on the instantaneous equator that has
no rotation rate about the corresponding polar axis (non-rotating origin). This condition is

formulated as © [h =0, meaning that there is no component of the total rotation rate along the
instantaneous polar axis. Therefore,

O=nlhgE+n@¥d-(E+s), (4.32)
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andsincen [? =0, n [hy= cod , wehave
s=(cosd-1)E . (4.33)

For convenience, we define coordinates X, Y, and Z:

X sind cosE
Y |=| sndsinE | . (4.34)
Z cod

Then, itiseasly shown that
XY-YX=—E(cos’d-1) ; (4.35)

and, substituting this together with Z = cosd into (4.33) and integrating yields

S=5y— 157 at , (4.36)

where sy = §t) ischosen so asto ensure continuity with the previous definition of the origin point
at the epoch 1 January 2003.
The transformation matrix, Q, equation (4.30), is given more explicitly by:

1-cos’E(1—cosd) —sinEcosE(1—cosd) sind cosE
Q=| —sinEcosE (1-cosd) 1-sin’E(l1-cosd) sindsinE |Rys) . (4.37)
—sind cosE —sind sinE coxd

With the coordinates, (X,Y,Z), defined by equation (4.34), and 1—cosd=asin’d, where
a=1/(1+cod), itiseasy to derivethat

1-ax? —aXy X
Q=| —axy 1-aY? Y Rys) , (4.38)
X —Y 1-dXx%V?Y

Expressions for X and Y can be obtained directly from precession and nutation equations with
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respect to the celestial system (see references mentioned in Section 4 of (Capitaine, 1990)). For the
latest (2000) precession and nutation models adopted by the IAU, McCarthy and Petit (2003) give
the following:

=_0.01661699 + 2004.19174288 7 — 0.42721905 72
—0.19862054 1° — 0.00004605 7* +0.00000598 1°

+ Z ((aso)jsin A+ (ac,o)jcos Aj> (4.39)
j

+ Z((asl)j TSINA, + (acyl)j rcosAJ->
i

+2 ((%2),— rsinA + (ac,z)j 12 cosAJ-) + ... [arcsec]
j

Y = —0.00695078 — 0.02538199 T — 22.40725099 1°
+0.00184228 3 + 0.00111306 r* +0.00000099 °

+2 ((bso)jsin A+ (bc,o)jcosAj> (4.40)
j

+ Z((bsl)j TSinA; + (bc,l)j rcosAj)
i

(bsa), rsinAj + (be2), 1% Cos A

+ ... [arcseq]

+2
j

where 7= (t—J2000)/36525 (Julian centuries since J2000), and the coefficients (ask); + (ack);
(bak),- » (bek) ; are availablel® in tabulated form for each of the corresponding fundamental
arguments, A;, of the nutation model. These arguments are similar to those given in equation
(4.23), but now include ecliptic longitudes of the planets.

Also, for the parameter, s, the following includes all terms larger than 0.5 parcsec, as well as
the constant, sg :

S=-— ;XY+ 94 +3808.35 T—119.94 1% — 72574.09 1°

+2 Cysinay + 2 Dy TsinB, + 2 Ey Tcosy, + 2 Fy 72 sin6,, [parcsed ,
k k K k

(4.41)

where the coefficients, Cy, Dy, Ey, Fy, and thearguments, a,, By, Vi, 6., are given by McCarthy
and Petit (2003, Chapter 5, p.11)1’.

16 http://maia.usno.navy.mil/ch5tables.html
17 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval
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We note that the newly adopted IAU 2000 models for precession and nutation (on which
expressions (4.39), (4.40), and (4.41) are based) replace the IAU 1976 precession model and the
AU 1980 nutation model. The new models are described in (ibid.) and yield accuracy of 0.2 mas
in the position of the pole.

To see how the coordinates, (d,E) , arerelated to the traditional precession and nutation angles,
it isnecessary to consider how the Celestial Reference System was defined prior to the new, current
kinematic definition. The dynamic definition was based on the mean equator and mean equinox at a
certain fundamental epoch, t,. Recall that the precession and nutation of the equator relative to the
mean ecliptic at ty is due to the accumulated luni-solar precessionsin longitude, ¢/, , and in the
obliquity of theecliptic, w, (which differsfrom £, by the rotation of the mean ecliptic; see Figure
4.4), aswell asthe nutations, Ay, and Ag, , in longitude and in the obliquity at t, (again, differing
from corresponding quantities at t). Let (d, E be coordinates, similar to (d,E), of the
instantaneous pole in the dynamic mean system. Then, defining (X, Y, Z | similar to (X,Y,2) , itis
easy derive the following identity from the laws of sines and cosines applied to the spherical
triangle, Y,Y3N , in Figure 4.9:

e snd cosE S n( Wy + Asl) S n( W+ At/fl)
Y |=| sind SINE | =| sinw, + Ag, | CO Yip + Ay COSE — COY W, + Agy | singg
z cosd

sinf wy + 4g, | cos( Ya+ Aty | singg + cos w, + Aey | cosey

(4.42)

Further expansionsof X and Y as series derivable from series expansions for the quantities, ¢, ,
Wy, Ay , and Ag; may be found in Capitaine (1990)18.

The dynamic mean pole, P , is offset from the kinematic pole of the ICRS, as shown in Figure
4.10, by small angles, &, in X and n, inY. Also, asmall rotation, da, separates the mean
equinox from the origin of the ICRS. These offsets are defined for the mean dynamic system in
the ICRS, so that the transformation between (X, Y, Z ) and (X,Y,Z) isgiven by

NI <] X|

X
= Rl(_ r]o) Rz(E()) Rg(dao) Y
Z
(4.43)
1 day, -4 \/Xx
=|—dag 1 -ngo | Y],
& no 1 |\Z

Observatory, Bureau International des Poids et Mesures.
18 Capitaine, N. (1990): The celestial pole coordinates. Celes. Mech. Dyn. Atr., 48, 127-143.
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where the approximation (1.9) was used. Or, setting Z= 1, and neglecting second-order terms,

(4.44)
Y=Y +ng+dagX

McCarthy and Petit (2003, Ch.5, p.9,12)1° give the following values for these offsets based on the
AU 2000 nutation mode!;

é,=—16.6170 = 0.01 mas
nNo=—16.8192 + 0.01 mas (4.449)
day=-14.60+ 0.5 mas

Therotation, day, refers to the offset of the mean dynamic equinox of an ecliptic interpreted as
being inertia (i.e., not rotating). In the past, the rotating ecliptic was used to define the dynamic
equinox. The difference (due to a Coriolis term) between the two equinoxes is about 93.7
milliarcsec (Standish, 1981)20, so care in definition must be exercised when applying the
transformation (4.44) with values (4.44a). Note that Figure 4.10 only serves to define the offsets
according to (4.44), but does not show the actual numerical relationship (4.45) between the ICRS
and the CEP(J2000.0) since the offsets are negative. Also, these offsets are aready included in the
expressions (4.39) and (4.40) for Xand Y.

The celestial pole offsets in longitude and obliquity, (5[//,56) , that correct for the lAU 2000
precession-nutation model on the basis of VLBI observations are not included, however, and must
be added. The corrections are published by IERS in terms of corrections to X and Y. The
coordinates of the CEP thus are (M cCarthy and Petit, 2003, Ch.5, p.10)

X=X(IAU 2000) + oX, Y=Y(IAU 2000) + dY , (4.45)
where

OX = Ssing, + ( Y COSEg — Xa|OE,
. (4.459)
oY = de— ((,UA Cost, —XA)&/JS ney -

19 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval
Observatory, Bureau International des Poids et Mesures.

20 Standish, E.M. (1981): Two differing definitions of the dynamical equinox and the mean obliquity. Astron.
Astrophys., 101, L17-L18.
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truepole at t

mean
ecliptic
at,

true equator at t

Figure 4.9: Coordinates of the true pole at t in the dynamic system of t; .

Pole(ICRF) vy
I
r]o CEP(J2000.0)
X
| dag |

a =0 (ICRF) Y(J2000.0)
Figure 4.10: Definition of offset parameters of dynamic mean systemin the ICRS.
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414 Problems

1. @ Makearough estimate of the present declination and right ascension of the vernal equinox
in 120 B.C., the date when precession was discovered.

b) Determine the mean coordinates at J1950.0 of the vernal equinox of the celestial frame
defined at J2000.0. Then determine the mean coordinates at J2000.0 of the vernal equinox of the
celestial frame defined at J1950.0. In both cases use the precession expressions derived for the
constants defined at the fundamental epoch J2000.0. Compare the precessional elementsin each
case and compare the resulting coordinates. Use 10-digit precision in your computations.

2. @ Thecoordinates of astar at J2000.0 are: a =16 hr 56 min 12.892 sec, 6=82° 12' 39.03" .
Determine the accumulated precession of the star in right ascension during the year 2001.
b) Determine the general precession, p,, accumulated over 1 Julian minute at J1998.0.

3. Show that the precession rates, mand n, at epoch, tg , are given by

M= 4612.4362" +(2.79312 T~ 0.000278 T2 [arcsed]
(4.46)

= 2004.3109" + (- 0.85330 T - 0.000217 T2 [arcsed] .

4. Give a procedure (flow chart with clearly identified input, processing, and output) that
transforms coordinates of a celestial object given in the celestial reference system of 1900 (1900
constants of precession) to its present true coordinates. Be explicit in describing the epochs for
each component of the transformation and give the necessary equations.

5. Derive the following equations: (4.36) starting with (4.33), (4.38) starting with (4.30), and
(4.42).
6. Show that

a=;+;(X2+Yz)+--- (4.47)

where a is defined after equation (4.37).

7. Derive equations (4.45a).
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4.2 Observationa Systematic Effects

The following sections deal with effects that need to be corrected in order to determine true
coordinates of celestial objects from observed, or apparent coordinates. These effects are due more
to the kinematics of the observer and the objects being observed than the dynamics of Earth’s
motion.

4.2.1 Proper Motion

Proper motion refers to the actual motion of celestial objects with respect to inertial space. As
such their coordinates will be different at the time of observation than what they are in some
fundamental reference frame that refersto an epoch, t;. We consider only the motion of stars and
not of planets, since the former are used, primarily (at least historicaly), to determine coordinates of
points on the Earth (Section 2.3.5). Proper motion, also known as space motion and stellar
motion, can be decomposed into motion on the celestial sphere (tangential motion) and radial
motion. Radial stellar motion would be irrelevant if the Earth had no orbital motion (see the effect
of paralax in Section 4.2.3).

Accounting for proper motion is relatively simple and requires only that rates be given in right
ascension, in declination, and in the radial direction (with respect to a particular celestial reference
frame). If r(tp) isthe vector of coordinates of a star in a catalogue (celestial reference frame) for
fundamental epoch, t, , then the coordinate vector at the current epoch, t, is given by

r) =r(to) + (t—to) r(to) , (4.48)

where this linearization is sufficiently accurate because the proper motion, r, is very small (by
astronomic standards). With

I cosd cosa
r=| rcosdsina |, (4.49)
r sind

where a and J areright ascension and declination, asusua, and r =|r | , wehave
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[ COS3COSa —I COSASING & — SiIN3cosa &
r=| rcosdsing +r cosdcosa a —r sindsinad | . (4.50)
[ SiNS+ 1 cosd &
The units of proper motion in right ascension and declination, a and 5 , typically are rad/century

and for the radial velocity, r, the units are AU/century, where 1 AU is one astronomical unit, the
mean radius of Earth’s orbit:

1 AU = 1.49598077739 x 101 m: 1 km/s= 21.095 AU/cent. . (4.51)

Theradia distanceis given as (see Figure 4.11)

_1AU
sinir

, (4.52)

where 77 is called the parallax angle (see Section 4.2.3). Thisisthe angle subtended at the object
by the semi-mgjor axis of Earth’s orbit. If thisangleisunknown or insignificant (e.g., because the
star is at too great adistance), then the coordinates of the star can be corrected according to

a(t) = alto) + (t—to) a,
(4.53)

&) = &to) + (t—to) I.

For further implementation of proper motion corrections, see Section 4.3.3.
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ecliptic plane

S
S
Star, S
\
1AU i
70 celestial sphere
C‘v s

Figure 4.11: Geometry of star with respect to solar system. Seeaso Fig.4.13
for the geometry on the celestial sphere.

4272 Aberration

Aberration is a displacement of the apparent object from its true position on the celestial sphere
due to the velocity of the observer and the finite speed of light. The classic analog is the apparent
danted direction of vertically faling rain as viewed from a moving vehicle; the faster the vehicle, the
more slanted is the apparent direction of the falling rain. Likewise, the direction of incoming light
from a star is distorted if the observer is moving at a non-zero angle with respect to the true
direction (see Figure 4.12). In general, the apparent coordinates of a celestial object deviate from
the true coordinates as a function of the observer’s velocity with respect to the direction of the

celestial object.

Geometric Reference Systems

true direction of
light source

apparent direction

P . of light source

he P

0 velocity of observer
%

Figure 4.12: The effect of aberration.
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Diurnal aberration is due to the observer’s velocity associated with Earth’s rotation; and,
annual aberration is due to the observer’s velocity associated with Earth’s orbital motion (thereis
also secular aberration due to the velocity of the solar system, but this is not observable-it isa
constant). These aberrations are grouped as stellar aberrations, as opposed to planetary
aberrations, where the motions of both the observer and the celestial body are considered. We do
not consider planetary aberration. Furthermore, aberration differs from the light-time effect that
accounts for the distance the light must travel from the time it is emitted to the time it is actualy
observed (thus, again, the apparent coordinates of the object are not the same as the true
coordinates). This effect must be considered for planets, and it is familiar to those who process
GPS data, but for stars this makes little sense since many stars are tens, hundreds, and thousands of
light-years distant.

We treat stellar aberration using Newtonian physics, and only mention the specia relativistic
effect. Accordingly, the direction of the source will appear to be displaced in the direction of the
velocity of the observer (Figure 4.12). That is, suppose in a stationary frame the light is coming
from the direction given by the unit vector, p. Then, in the frame moving with velocity, v, the light
appears to originate from the direction defined by the unit vector, p', which is proportional to the
vector sum of the two velocities, v and cp :

vV+cp
[v+cpl|’

p= (4.54)

where c is the speed of light (in vacuum). Taking the cross-product on both sides with p and

extracting the magnitudes, we obtain, with |p x p' | =sin4é, |[pxv|=vsing,and |[pxp|=0, the
following:
AG= vsing
[v+cp
vsin@

_ (4.55)
v/ V2 +c% + 2ve cos

V.
=—sn@+.. ,
C

where v is the magnitude of the observer’s velocity, and higher powers of v/c are neglected.
Accounting for the effects of special relativity, Seidelmann (1992, p.129)21 gives the second-order

21 Seidelmann, PK. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.
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formula:

2
sinAG:VsinH—l(v) Sn26+ ... . (4.56)
C 4\c

Redlizing that the aberration angleisrelatively small, we use the gpproximate formula:

26= ‘é sng . (4.57)

With respect to Figure 4.13, let S denote the true position of the star on the celestial sphere with
true coordinates, (0 o) , andlet S denote the apparent position of the star due to aberration with
corresponding aberration errors, Ao and Aa, in declination and right ascension. Notethat S ison
the great circlearc, SF , where F denotes the point on the celestial sphere in the direction of the

observer’svelocity (that is, the aberration angle isin the plane defined by the velocity vectors of the
observer and the incoming light). By definition:

3= dg—Ad,
(4.58)
ag=ag—-A4Aa.
NCP
Aa s Ao CODg §
- -A¢
9075\ A8
S 90°-5. g
T A8+ Ny
/ 0 SR
ag \JF
v
. celestial
celestil - equator
sphere

Figure 4.13: Geometry on the celestial sphere for aberration and parallax. For aberration,
u = v =velocity of the observer; for parallax, u = eg = direction of barycenter.

We have from the small triangle, SSS':
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Aa cosOg

COS(// = T , (459)
and
: -Ad
S n(,ll = E . (460)
From triangle S-NCP—F , by the law of sines, we have
sin@ cosy = coso sin(ag —ag) (4.61)

where the coordinates of F are (Jg,a) . Substituting (4.59) into (4.57) and using (4.61) yields

V.
Ao cosOg = P sin@ cosy

= \E/ cosd: sSin(ag — a9 (4.62)

v : :
=G COSOr (SINaE Cosag— COSAE SINA) .

Now, thevelocity, v, of the observer, in the direction F on the celestial sphere, can be expressed
as

X V COSOr COSa
v=|y |=| vcosd-sinag |, (4.63)
z VSinde
where v =|v|. Hence, using (4.63) in (462), the effect of aberration on right ascension is given by
y X .
Aa = < 00sag—_sinag Secog . (4.64)
For the declination, we find, again from the triangle, S-NCP—F , now by the law of cosines, that:

Sindg = sindgcosf — cosdgsindsiny . (4.65)
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Also, with the unit vector defining the position of the star on the celestia sphere,
C0SOg COSO g
p=| cosdgsinag | , (4.66)
Sindg

we have the scalar product, using (4.63):

p [ =v cosf

(4.67)
= X C0S05 COSA s + Y COSIs SiNAg+ ZSiNds .
We solve (4.67) for cosf and substitute thisinto (4.65), which is then solved for sin@sing to get
X v . .z

sin@siny = v sindgcosag+ y sméssmars—v CoSdg . (4.68)

From (4.60) and (4.57), wefinally have

Ad= —% sindscosas—% sindgsinag+ % C0SJg . (4.69)

For diurnal aberration, the observer (assumed stationary on the Earth’s surface) has only
eastward velocity with respect to the celestial sphere due to Earth’ srotation rate, w; it is given by
(see Figure 4.14):

v=aw,(N+h)cosp, (4.70)

where N isthe ellipsoid radius of curvature in the prime vertical and (gh) are the geodetic latitude
and dlipsoid height of the observer (see Section 2.1.3.1). In this case (see Figure 4.15):

X =V cos(ag+ tg—270°,
y=vsin(ag+ tg—270°), (4.71)

z=0,
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where tg is the hour angle of the star. Substituting (4.71) into (4.64) and (4.69), we find the
diurna aberration effects, respectively, in right ascension and declination to be:

Aa = \—é costgsecdg,
(4.72)

Voo
Aézgsmtssmés.

In order to appreciate the magnitude of the effect of diurnal aberration, consider, using (4.70), that

a
v_2% (N+h cosp= 0.3200 [arcsec] (N*h)

s a a cosy , (4.73)

which is also called the “constant of diurnal aberration”. Diurnal aberration, thus, is always less
than about 0.32 arcsec .

|atitude
circleon
Earth

(N+h) cosp

Figure 4.14: Velocity of terrestrial observer for diurnal aberration.

celestial
equator 90° - (360° - (g +1d))
= as+ ts_ 270°
A
Y
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Annual aberration, on the other hand, is two orders of magnitude larger! In this case, the
velocity of the observer is due to Earth’s orbital motion and the velocity vector isin the ecliptic
plane. The”constant of annual aberration” is given by

2rAU/yr
V- 78)/ ~10"* =20 arcsec . (4.74)
C 3x10°m/s

From this, one can determine (left to the reader) how accurately Earth’s velocity must be knownin
order to compute the annual aberration to a given accuracy. Accurate velocity components are given
in the Astronomical Almanac (Section B, p.44)22 in units of 10"9AU/day in the barycentric
system. Note that the second-order effect, given in (4.56), amounts to no more than:

1(v\? -8 —4
2|3) =025%x107® =5x 10" arcsec. (4.75)

We further note that, aside from the approximations in (4.64) and (4.69), other approximations
could be considered in deriving the annual aberration formulas, e.g., taking Earth’s orbit to be
circular. In this case, corrections may be necessary to account for the actual non-constant speed
along the dliptical orbit. Also, if the velocity coordinates are given in a heliocentric system, then the
motion of the sun with respect to the barycentric system must be determined, as must the effect of
the planets whose motion causes the heliocentric velocity of the Earth to differ from its barycentric
velocity.

423 Parallax

Parallax is a displacement of the apparent object on the celestial sphere from its true position due
to the shift in position of the observer. Diurnal parallax is due to the observer’s change in
position associated with Earth’s rotation; annual parallax is due to the observer’s change in
position associated with Earth’s orbital motion. For objects outside the solar system, the diurnal
parallax can be neglected since the Earth’s radius is much smaller than the distance even to the
nearest stars. Therefore, we consider only the annual parallax. For quasars, which are the most
distant objectsin the universe, the parallax is zero.

Returning to Figure 4.11, the coordinates of E, denoted by the vector, (Xg, Vg, zB)T ,aregivenin
the barycentric frame. The parallax angle, 77, of astar isthe maximum angle that the radius, p, of
Earth’s orbit (with respect to the barycenter) subtends at the star (usually, pg is taken as the semi-

22 The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory,
Washington, D.C.
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major axis of Earth’s elliptical orbit, or with sufficient accuracy, 1 AU). From the law of sines
applied to the triangle, EBS, according to the figure:

SnA0 _ Pe _
sng rg

, (4.76)

where r g isthe distance to the star. The effect of parallax, is therefore, approximately
AB=msing . (4.77)

Clearly, thisformula has a strong similarity to the aberration effect, (4.57); and, indeed, we can
use the same Figure 4.13 as before, but now identify the point, F, with the direction from the
observer to the barycenter of the celestial coordinate frame. The unit vector defining F is, therefore,

X
Pe COSOp COSU'E
p=| - Zi =| cosd:sinag |, (4.78)
Z Sindc
e

(note the negative signsin p are dueto the geocentric view). From (4.59) and (4.77),
Aa = rsinf cosyy secdg . (4.79)
Substituting (4.61) and (4.78), we obtain the effect of annual parallax on right ascension:

_ | XB . YB
Aa = 11| — sindg— — C0SAg| SeCg . (4.80)
Pe Pe

Similarly, from (4.60) and (4.77),
Ad=-A0sin@siny . (4.82)

Using (4.68) with appropriate substitutions for the unit vector components, we find
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_ | %8 . YB . . Zp
Ad= 11| — cosagSindg+ —— SiNQgSINdg— —— COSJg | . (4.82)
Pe Pe Pe

In using (4.80) and (4.82), we can approximate p-=1AU and then the coordinate vector,
(X, Y@, Zg) ", should have units of AU.

424 Refraction

Aslight (or any electromagnetic radiation) passes through the atmosphere, being a medium of non-
zero mass density, its path deviates from a straight line due to the effect of refraction, thus causing
the apparent direction of avisible object to depart from its true direction. We distinguish between
atmospheric refraction that refers to light reflected from objects within the atmosphere, and
astronomic refraction that refers to light coming from objects outside the atmosphere.
Atmospheric refraction is important in terrestrial surveying applications, where targets within the
atmosphere (e.g., on the ground) are sighted. We concern ourselves only with astronomic
refraction of light. In either case, modeling the light path is difficult because refraction depends on
the temperature, pressure, and water content (humidity) along the path.

For a spherically symmetric (i.e., sphericaly layered) atmosphere, Snell’s law of refraction
leads to (Smart, 1960, p.63)23:

nr sinz = constant , (4.83)

where n is the index of refraction, assumed to depend only on the radial distance, r, from Earth’s
center, and zisthe angle, at any point, P, along the actual path, of the tangent to the light path with
respect to r (Figure 4.16). It isassumed that the light ray originates at infinity, which is reasonable
for all celestial objectsin this application. With referenceto Figure 4.16, zg is the true topocentric
zenith distance of the object, topocentric meaning that it refers to the terrestrial observer. The
topocentric apparent zenith distance is given by z,; and, as the point, P, moves aong the actual
light path from the star to the observer, we have

0<z<z,. (4.84)

We define auxiliary angles, zp and zp, in Figure 4.16, and note that

Zp=2p+2Z. (4.85)

23 Smart, W.M. (1977): Textbook on Spherical Astronomy. Cambridge University Press, Cambridge.
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Also, the total angle of refraction is defined here by
Az=25-12g, (4.86)
interpreted as an error in the observed zenith distance. The error is generally negative, and then

the correction (being the negative of the error) is positive. The angle, zp, is the apparent zenith
distance of the point, P, asit travels along the path, and the defined quantity,

Np=2p—2y=2p+2-2,, (4.87)

then variesfrom — Az to 0 as P moves from infinity to the observer. The total angle of refraction
isthus given by

0

Az= | dAz, . (4.88)
"y
apparent
direction
of star
zenith light path

z

-~ P true, topocentric

% direction of star

Zs
observer
r
Z5
geocenter

Figure 4.16: Geometry for astronomic refraction.

Now, taking differentiasin (4.83), we have
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d(nr) sinz+nr coszdz=0, (4.89)
which leadsto

dz=—tan (4.90)

From Figure 4.17, which represents the differential displacement of the point, P, along the light
path, we aso have

r dzp

tanz= dr

dzp = c:r tanz . (4.91)

Substituting (4.90) and (4.91) for the differential of the right side of (4.87), we find:

d(4zp) = dzp + dz

-l

(4.92)

This can be simplified using d(nr) =r dn + ndr , yielding
d
d(4zp) = — tanz Fn | (4.93)
Substituting (4.90) now gives

dn nr
d(AZp) = F m Z

_rdn

T ndr+rdn (4.94)
,dn

= r dz.

n+r%
dr
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zenith z

dzp

geocenter
Figure 4.17: Differential change of P along light path.

Putting this change of integration variable from Azp to zinto (4.88), we have

W

Az= dz (4.95)

o

where the limits of integration are obtained by noting that when P - o, z=0, and when P is at
the observer, z=2z,. Again, note that (4.95) yields the refraction error; the correction is the negative
of this.

To implement formula (4.95) requires a model for the index of refraction, and numerical
methods to calculate it are indicated by Seidelmann (1992, p.141-143)24. Theerrorsin the
observed coordinates are obtained as follows. From (2.186), we have

SiNdg= C0SAgCOSP sinzg+ SIN® COsZg , (4.96)

where Ag isthe azimuth of the star. Under the assumptions, AAg=0 and A® =0, thisleadsto

Ad= COSAg COS® COSZ5— SINP nzs) , (4.97)

Az
coses, |

24 Seidel mann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.
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Similarly, from (2.178), it can be shown easily that

—SnAg
—Sin®cosAg+ cos@ cotzg

tantg = (4.98)

Again, with AAg=0 and A®=0, and noting that Ats=—Aag, one readily can derive (left to the
reader — use (2.178)!) that:

Sintg cos®

SiNZg C0SOg

Az . (4.99)
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425 Problems
1. Derive (4.83) and (4.99).

2. InVLBI (Very Long Basdline Interferometry), we analyze signals of a quasar (celestial object at
an extremely large distance from the Earth) at two points on the Earth to determine the directions of
the quasar at these two points, and thus to determine the terrestrial coordinate differences,
Ax, Ay, Az . The coordinates of the quasar are given in the ICRF. State which of the following
effects would have to be considered for maximum accuracy in our coordinate determination in the
ITRF (note that we are concerned only with coordinate differences):

precession, nutation, polar motion, proper motion, annual parallax, diurnal parallax, annual
aberration, diurnal aberration, refraction. Justify your answer for each effect.
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4.3 Relationship to the Terrestrial Frame

Previous Sections provided an understanding of the relationship between catal ogued coordinates of
celestia objects (i.e., in acelestia reference frame) and the coordinates as would be observed on the
rotating and orbiting Earth. Thus, we are ailmost ready to transform these apparent coordinates to
the terrestrial frame. But the axes that define the terrestrial reference system differ from the axes
whose dynamics were described in Section 4.1. In fact, the spin axis and various other “natural”
axes associated with Earth’s rotation exhibit motion with respect to the Earth’s crust due to the
natural dynamics of the rotation, but the axes of the terrestrial reference system are fixed to Earth’s
crust. Euler’sequations describe the motion of the natural axes for arigid body, but because the
Earth ispartialy fluid and elastic, the motion of these axesis not accurately predictable. The reader
is referred to Moritz and Mueller (1987)2° for theoretical and mathematical developments of the
dynamics equations for rotating bodies; we restrict the discussion to a description of the effects on
coordinates. However, a heuristic discussion of the different types of motion of the axesis also
given here, leading ultimately to the definition of the Celestial Ephemeris Pole (CEP). The recent
changes in the fundamental conventions of the transformation between the celestial reference
system and the CEP have a so been extended to the transformation between the terrestrial reference
system and the CEP; and these are described in Sections 4.3.1.1 and 4.3.2.1. Moreover, the name
of the CEP has been changed to Celestial Intermediate Pole (CIP). We retain the former for the
discussion at the moment to be consistent with much of the past literature, but adopt the current
concept in Section 4.3.2.1. The last sub-section then summarizes the entire transformation from
celestial to terrestrial reference frames.

43.1 Polar Motion

The motion of an axis, like the instantaneous spin axis, of the Earth with respect to the body of the
Earth is called polar motion. In terms of coordinates, the motion of the axis is described as
(Xp, Yp) With respect to the reference pole, CIO, or IRP, of the Conventional Terrestrial Reference
System. Figure 4.18 shows the polar motion coordinates for the CEP (see Section 4.3.2); they are
functions of time (note the defined directions of x and y). Since they are small angles, they can be
viewed as Cartesian coordinates near the reference pole, varying periodically around the pole with
magnitude of the order of 6 m; but they are usually given as anglesin units of arcsec.

25 Moritz, H. and I.1. Mueller (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New Y ork.
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Figure 4.18: Polar motion coordinates.

The principal component of polar motion is the Chandler wobble. Thisis basically the free
Eulerian motion which would have a period of about 304 days, based on the moments of inertia of
the Earth, if the Earth were arigid body. Due to the elastic yielding of the Earth, resulting in
displacements of the maximum moment of inertia, this motion has a longer period of about 430
days. S.C. Chandler observed and analyzed this discrepancy in the period in 1891 and Newcomb
gave the dynamical explanation (Mueller, 1969, p.80)26. The period of this main component of
polar motion is called the Chandler period; its amplitude is about 0.2 arcsec. Other components
of polar motion include the approximately annual signal due to the redistribution of masses by way
of meteorological and geophysical processes, with amplitude of about 0.05—-0.1 arcsec, and the
nearly diurnal free wobble, due to the liquid outer core (so far it has not been detected, only
predicted). Finally, thereisthe so-called polar wander, which is the secular motion of the pole.
During 1900 — 2000, Earth’s spin axis wandered about 0.004 arcsec per year in the direction of
the 80° W meridian. Figure 4.19 shows the Chandler motion of the pole for the period 1992.5 to
2000, and aso the general drift for the last 100 years.

26 Mueller, 1.1. (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publ. Co.,
New York.
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Figure 4.19: Polar motion from 1992.5 to 2000, and polar wander since 1900. Polar motion
coordinates were obtained from IERS? and smoothed to obtain the trend.

The transformation of astronomic terrestrial coordinates and azimuth from the instantaneous
pole (the CEP) to the terrestrial reference pole fixed on the Earth’s crust (the CIO or IRP) is
constructed with the aid of Figures 4.20 and 4.21. Let @, A, A; denote the apparent (observed)
astronomic latitude, longitude, and azimuth at epoch, t, with respect to the CEP; and let &, A, A
denote the corresponding angles with respect to the terrestrial pole, such that

AD= O— @),
MM=A=A,, (4.100)
MA=A-A,

represent the corrections to the apparent angles. In linear approximation, these corrections are the
small angles shown in Figures 4.20 and 4.21.

27 http://hpiers.obspm.fr/eop-pc/products/eopcomb.html
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Figure4.20: Relationship between apparent astronomical coordinates at current epoch, t, and
corresponding coordinates with respect to the terrestrial reference frame.

We introduce the polar coordinates, d and 8, so that:

Xp = d cosb,
(4.101)
yp=dsing.
Then, for the latitude, we have from the triangle, CEP—| RP—F :
A®=dcos(180° -, - 6)
=—d cos/, cosf+ dsinA, sinf (4.102)
=Yp SiN\; — Xp COSA, .
For the azimuth, using the law of sines on the spherical triangle, CEP-IRP-Q , we have:
sin(-4a) _ sin(180° -A,—6) (4.103)

snd ~ sin(90°— @)
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With the usual small angle approximations, this leadsto

_d o :
A== (sin/\; cosB + cosA, sinb) ,

(4.104)
=—(Xp SN/ +yp COSA,) sec® .

Finally, for the longitude we again apply the law of sines to the triangle, QRM, Figure 4.21, to
obtain:

sin(-4A) _ sin90°
sn(-44) ~ sing,

(4.105)

From this and with (4.104), we have

AN =sn@, AA
(4.106)
== (Xp SN/ +yp COSA, | tan® .

Relationships (4.102) and (4.106) can also be derived from

cos@; cos/\, Cos® cos/
cos@, sin/\; | =Ry(yp) Ro(Xp) | cos@sin/A |, (4.107)
sing, STalex

where the vectors on either side represent unit vectors in the direction of the tangent to the local
plumb line, but in different coordinate systems; and the rotation matrices are given by (1.4) and
(1.6). The combined rotation matrix, in (4.107), for polar motion is also denoted by W,
representing the transformation from the terrestrial pole to the celestial pole:

W= Ry(yp) Ra(xp) - (4.108)

The polar motion coordinates are tabulated by the IERS as part of the Earth Orientation Parameters
(EOP) on the basis of observations, such as from VLBI and satellite ranging. Thus, W isa
function of time, but there are no analytic formulas for polar motion as there are for precession and
nutation.
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Figure 4.21: Relationship between the apparent longitude with respect to the CEP and the longitude
with respect to IRP.

4311 New Conventions

Asdescribed in Section 4.1.3, the celestial coordinate system associated with the instantaneous pole
(the CEP) possesses a newly defined origin point for right ascensions. a non-rotating origin
(NRO), o, called the Celestial Ephemeris Origin (CEO). The instantaneous pole can also be
associated with an instantaneous terrestrial coordinate system, where likewise, according to
resolutions adopted by the IAU (and IERS), the origin of longitudesis a non-rotating origin, called
the Terrestrial Ephemeris Origin (TEO). It should be noted that neither the CEO nor the TEO
represents an origin for coordinates of points in a reference system. They are origin points
associated with an instantaneous coordinate system, moving with respect to the celestial sphere (the
CEO) or with respect to the Earth’s crust (TEO), whence their designation, “ephemeris’.

With this new definition of the instantaneous terrestrial coordinate system, the polar motion
transformation, completely analogous to the precession-nutation matrix, Q' , equation (4.30), is now
given as

W= Rs(—s) Ry(—F) Ry(g) Ry(F) , (4.109)
where the instantaneous pole (CEP) has coordinates, (g,F) , in the terrestrial reference system. As

shown in Figure 4.22, g is the co-latitude (with respect to the instantaneous equator) and F is the
longitude (with respect to the TEO, w); and we may write:
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Xp sing cosF
Yp |=| —singsinF |, (4.110)
z, coyg

where the adopted polar motion coordinates, (X,,y,) , are defined as before (Figure 4.20), with y,,
along the 270° meridian.

F
IRP (reference pole)
g
instantaneous 'p
pole .
Q, . 90° M
S ‘ + F ! 900 g
)
reference
true equator
equator
at

Figure 4.22: Coordinates of instantaneous pole in the terrestrial reference system.

With acompletely analogous derivation as for the precess on-nutation matrix, Q, we find that

1 % a
—aX, aXpp —Xp
. 2
W=R3(-S)| aXy, 1-ay, Yp : (4.111)
(.2 2
Xp -Yp 1—a(xp+yp)

where &' = 1/(1 + cosg) = ; + %(xi + yf)) . Also, the parameter, s, defining the location of the TEO
as anon-rotating origin on the instantaneous equator, is given (analogous to equation (4.36)) by
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t

_ i Xpyp‘ypxp
S=gy+ Rt dt (4.112)

o

to

again, noting that y, is positive along the 270° meridian. The constant, sy, may be chosen to be
zero(ie, S iszeroat t=tg).

It is easy to show that by neglecting terms of third and higher orders, the exact expression
(4.111) is approximately equal to

W= Rs(— ) Ry(3%pyp) Ry(Yp) Ra(Xp) - (4.113)

Furthermore, s is significant only because of the largest components of polar motion and an
approximate model is given by28

$=-00015(aj/12+a2) T [arcsed] | (4.114)

where a; and a, arethe amplitudes, in arcsec, of the Chandler wobble (O(0.2 arcsec)) and the
annual wobble (O(0.05 arcsec)) . Hence, the magnitude of s is of the order of 0.1 mas. The
IERS Conventions 2003 (ibid.) also neglect the second-order terms (being of order 0.2 pas) in
(4.113) and give:

W= Ry(—8) Ry(Yp) Ro(Xp) (4.115)

which is the traditional transformation due to polar motion, equation (4.108), with the additional
small rotation that exactly realizes the instantaneous zero meridian of the instantaneous pole and
equator.

The polar motion coordinates should now aso contain short-period terms in agreement with the
new definition of the intermediate pole. Thus, according to the IERS Conventions 2003 (ibid):

(Xp’yp) = (X’y)IERS + (AX’Ay) tid$+ (AX’Ay) nutations ’ (4'116)

where (x,y),erg are the polar motion coordinates published by the IERS, (4x,4y), ., are modeled
tidal components in polar motion derived from tide models (mostly diurnal and sub-diurnal
variations), and (Ax,Ay) nutations /€ 1ong-period polar motion effects corresponding to short-period
(less than 2 days) nutations. The latter should be added according to the new definition of the

28 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. IERS Technical Note 32, U.S. Naval
Observatory, Bureau International des Poids et Mesures.
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intermediate pole that should contain no nutations with periods shorter than 2 days.

4312 Problems

1. Deriveequations (4.111) and (4.113).

2. @ From the web site “http://hpiers.obspm.fr/” extract the polar motion coordinates (Earth
orientation parameters (EOP)) from 1846 to 1999 at 0.05 year (0.1 year) intervals.

b) Plot the polar motion for the intervals 1900.0 - 1905.95 and 1992.0 - 1997.95. Determine
the period of the motion for each interval. Describe the method you used to determine the period
(graphical, Fourier transform, least-squares, €tc.).

¢) Using the period determined (use an average of the two) in b) divide the whole series from
1846 to 1997 into intervals of one period each. For each such interval determine the average
position of the CEP. Plot these mean positions and verify the polar wander of 0.004 arcsec per
year in the direction of —-80° longitude.

3.(advanced) From the data obtained in 1a) determine the Fourier spectrum in each coordinate and
identify the Chandler and annual components (to use a Fourier transform algorithm, such as FFT,
interpolate the data to a resolution of 0.05 year, where necessary). For each polar motion
coordinate, plot these components separately in the time domain, as well as the residual of the
motion (i.e., the difference between the actual motion and the Chandler plus annual components).
Discuss your resultsin terms of relative magnitudes. What beat-frequency is recognizable in a plot
of thetotal motion in the time domain?
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432 Celestial Ephemeris Pole

In order to understand how the CEP is chosen as the defining axis for which nutation (and
precession and polar motion) are computed, it is necessary to consider briefly the dynamics and
kinematics of Earth rotation. The theory is given in detail by Moritz and Mueller (1987)2°. We
consider the following axes for the Earth:

1. Instantaneousrotation axis, R. Itisthedirection of the instantaneous rotation vector, a .

2. Figureaxis, F. Itisthe principal axis of inertia that corresponds to the moment of inertia
with the maximum value. These terms are explained as follows. Every body has an associated
inertiatensor, |, which isthe analogue of (inertial) mass. (A tensor isageneralization of a vector,
in our case, to second order; that is, a vector isrealy afirst-order tensor.) The tensor may be
represented as a 3 x 3 matrix of elements, I}, that are the second-order moments of the mass
distribution of abody with respect to the coordinate axes. Specifically, the moments of inertia, |
occupy the diagona of the matrix and are given by

i
I”:J P2 dm; j=123; (4.117)

where r? = xi + xg + xg ; and the products of inertia, I;,, are the off-diagonal elements expressed
as

Ij’k:_J Xj Xkdm; jik (4118)

mass

Thus, the inertiatensor is given by

l11 112 I13
= |2’1 |2,2 |2,3 . (4119)
I31 132 I33

The products of inertia vanish if the coordinate axes coincide with the principal axes of inertia for
the body. This happens with a suitable rotation of the coordinate system (with origin assumed to be

29 Moritz, H. and I.I. Mueller (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New Y ork.

Geometric Reference Systems 4-53 Jekeli, December 2006



at the center of mass) that diagonalizes the inertia tensor (this can always be assumed possible).
Heuristically, these principal axes represent the axes of symmetry in the mass distribution of the
body.

3. Angular momentum axis, H. It isdefined by the direction of the angular momentum vector,
H , asaresult of rotation. We have, by definition,

H=la: . (4120)

This shows that the angular momentum vector, H , and the angular velocity vector, i, generdly are
not parallel. Equation (4.120) isthe analogue to linear momentum, p, being proportional (hence
always paralld) to linear velocity, v (p = mv, where m isthe total mass of the body).

For rigid bodies, Euler’ s equation describes the dynamics of the angular momentum vector in
a body-fixed frame (coordinate axes fixed to the body):

LP=HP+ e xHP, (4.121)

where L® is the vector of external torques applied to the body (in our case, e.g., luni-solar
gravitational attraction acting on the Earth). The superscript, b, in (4.121) designates that the
coordinates of each vector are in a body-fixed frame. In theinertial frame (which does not rotate),
equation (4.121) specializesto

Li=H". (4.122)

Again, the superscript, i, designates that the coordinates of the vector are in the inertial frame. If
L'=0, then no torques are applied, and this expresses the law of conservation of angular
momentum: the angular momentum of a body is constant in the absence of applied torques. That
is, H'=0 clearly impliesthat H remainsfixed ininertial space.

In general, equation (4.121) isadifferential equation for H° with respect to time. Its solution
shows that both H° and @: (through (4.120)) exhibit motion with respect to the body, even if
LP=0. Thisis polar motion. Also, if LP# 0, H° changes direction with respect to an inertial
frame — we have already studied this as precession and nutation. Comprehensively, we define the
following:

Polar Motion: the motion of the Earth’saxis (R, F , or H) with respect to the body of the Earth.

Nutation: the motion of the Earth’saxis (R, F, or H) with respect to theinertia frame.
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Both polar motion and nutation can be viewed as either motion in the absence of torques (free
motion) or motion in the presence of torques (forced motion). Thus, there are four possible types
of motion for each of the three axes. However, for one axis we can rule out one type of motion.
For arotating body not influenced by external torques (L = 0), the angular momentum axis, H , has
no nutation (as shown above, it maintains a constant direction in the inertial frame). Therefore, H

has no free nutation. On the other hand, the direction of the angular momentum axis in space is
influenced by external torques, and so H exhibits forced nutations.

We thus have the following types of motion:

i) forced polar motionof R, F,or H;

ii) freepolar motionof R, F,or H;

iii) forced nutationof R, F,or H;

iv) freenutationof R or F.

We also note that for arigid body, F has no polar motion (free or forced) sinceit is an axis defined

by the mass distribution of the body, and therefore, fixed within the body. On the other hand, the

Earthis not arigid body, which impliesthat F is not fixed to the crust of the Earth — it follows the

principal axis of symmetry of the mass distribution as the latter changesin time (e.g., dueto tidal

forces). In summary, the consideration of nutation and polar motion involves:

a) threeaxes, R, F,and H (and one morefixed to the Earth, the CIO or IRP;, wecal it O);

b) rigid and non-rigid Earth models,

c) freeand forced motions.

From a study of the mechanics of body motion applied to the Earth, it can be shown that (for an

elagtic Earth moddl; see Figure 4.23):

a) the axes Ry, Fy, and H, corresponding to free polar motion, all lie in the same plane;
smilarly theaxes, R, F, and H, corresponding to the (actual) forced motion also must liein
one plane;

b) forced polar motion exhibits nearly diurnal (24-hr period) motion, with amplitudes of ~ 60 cm
for R, ~40cm for H, and ~ 60 meters for F;

c) freenutation exhibits primarily nearly diurnal motion.

On the other hand (again, see Figure 4.23):

d) free polar motion is mostly long-periodic (Chandler period, ~ 430 days), with amplitudes of
~6m for Ry and Hy,and ~2m for Fy;

€) forced nutation is mostly long-periodic (18.6 yr , semi-annual, semi-monthly, etc.).
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=

Figure 4.23: Free (zero-subscripted) and forced polar motions of axes for an elastic Earth.
(Not to scae; indicated amplitudes are approximate.)

Free motion (polar motion and nutation) cannot be modeled by simple dynamics, and can only
be determined empirically on the basis of observations. It is rather irregular. Forced motion,
being due to torques from well known external sources, can be predicted quite accurately from luni-
solar (and planetary) ephemerides.

If the Earth were arigid body, then the F -axis would be fixed to the Earth (F = Fy = O in this
case) and could serve as the reference for polar motion of the H - and R -axes. However, for anon-
rigid Earth, in particular, for an elastic Earth, the F -axis deviates substantially from afixed point on
the Earth with a daily polar motion of amplitude ~60 m. Thus, F cannot serve as reference axis
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either for polar motion or for nutation.

In Figure 4.23, the point O isafixed point on the Earth’s surface, representing the mean polar
motion (for the elastic Earth), and formally is called the mean Tisserand figure axis. It can be
shown that free polar motion affects the nutations of the O - and R -axes, while the nutation of the
H -axis is unaffected by free polar motion. Thisis because the motion of the angular momentum
axis is determined dynamically from the luni-solar torques (equation (4.120)) and not by the
internal constitution of the Earth. This makes H a good candidate for the reference axis for
nutations, since its (forced) nutation is unaffected by difficult-to-model free polar motion, and it has
no free nutation.

However, it still has forced polar motion (diurnal and erratic). Therefore, the IAU in 1979
adopted H, asthe CEP (i.e., the celestial reference pole), since Hy has no forced polar motion (by
definition); and it, like H , has no free nutation. Thus Hy has no nearly diurnal motions according
to b) and c) above — it is rather stable with respect to the Earth and space. Note that H still has
free polar motion and forced nutation. On the other hand, as mentioned above, the (forced) nutation
of Hy does not depend on free polar motion. And since the O -axis (being fixed to the Earth’s
crust) also has no polar motion (i.e., by definition), its forced nutation, like that of H, does not
depend on free polar motion. Therefore, both the O -axis and the Hg -axis have the same forced
nutations. All these properties of Hy make it the most suitable candidate for the Celestial
Ephemeris Pole (CEP).

4321 Cedledstiad Intermediate Pole

The Celestial Ephemeris Pole (CEP) was defined to be a pole that has no nearly diurnal motions
with respect to inertial space nor with respect to the Earth’s crust. This pole served as the
intermediate pole in the transformation between the celestial and terrestrial reference systems. That
is, polar motion referred to the motion of the CEP relative to the terrestrial reference pole, and
nutation referred to the motion of the CEP relative to the celestial reference pole. As such, the
realization of the CEP depends on the model developed for nutations and it also depends on
observations of polar motion. Moreover, modern observation techniques, such as VLBI, are now
able to determine motion of the instantaneous pole with temporal resolution as high as afew hours,
which means that no intermediate poleis defined for such applications. Also, the modern theories
of nutation and polar motion now include diurnal and shorter-period motions (particularly the
variations due to tidal components). These devel opments have made it necessary to define a new
intermediate pole. Rather than defining it in terms some particular physical model, such as the
angular momentum axis, it is defined in terms of realizing frequency components of motion,
separating those that conventionally belong to space motion (nutation) and those that can be treated
as terrestrial motion (polar motion). In this way it is precisely an intermediate pole used in the
transformation between the celestial and terrestrial systems.

The new intermediate poleis called, to emphasize its function, the Celestial Intermediate Pole
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(CIP). It separates the motion of the terrestrial reference pole (CIO or IRP) in the celestial
reference system into two parts (nutation and polar motion) according to frequency content.
According to aresolution adopted by the IAU, the precessional and nutational motion of the CIP
with respect to the celestial sphere has only periods greater than 2 days (frequencies less than £0.5
cycles per sidereal day). These are the motions produced mainly by external torques on the Earth.
Also included are the retrograde diurnal polar motions since it can be shown that they are equivalent
to nutations with periods larger than 2 days. The terrestrial motions of the CIP, on the other hand,
are defined to be those with frequencies outside the so-called retrograde diurnal band
(frequencies between —1.5 and —0.5 cycles per sidereal day). These are retrograde motions with
periods of the order of half aday or less or periods greater than 2 days, aswell asal prograde polar
motions. They include prograde diurnal and semi-diurnal nutations which can be shown to be
equivalent to polar motions. In that sense, the CIP is merely an extension of the CEP in allowing
higher frequency nutation components to be included (but as polar motions) in the intermediate
pole. They have minimal impact for most users, having at most a few tens of micro-arcsec in
amplitude (for the nutations) and up to a few hundred micro-arcsec for tidally induced diurnal and
semi-diurnal polar motions. The reader is referred to the |ERS Conventions 200330 and the IERS
Technica Note 2931 for further summaries, details, and references.

433 Transfor mations

We are interested in transforming the coordinates of a celestial object as given in a Celestial
Reference Frame to the apparent coordinates as would be measured by aterrestrial observer. The
transformation, of course, isreversible; but this direction of the transformation is most applicablein
geodesy, since we want to use the given coordinates of celestial objects in our observation models
(e.g., to determine the coordinates for terrestria stations). The given celestial frame coordinates are
mean coordinates referring to some fundamental epoch and the transformations account for
precession up to the epoch of date, nutation at the epoch of date, Earth rotation, polar motion, and
various systematic effects due to proper motion of the object, aberration, parallax, and refraction.
Some other considerations are needed, as well, with respect to the new definition of the ICRS. The
transformation is formulated in terms of an algorithm for geocentric and topocentric observers.

30 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. IERS Technical Note 32, U.S. Nava
Observatory, Bureau International des Poids et Mesures.

31 Capitaine, N. (2002): Comparison of “old” and “new” concepts. the celestial intermediate pole and Earth
orientation parameters. In: IERS Technical Note No. 29, Capitaine, N., et al. (eds.), Verlag des Bundesamts fur
Kartographie und Geodasie, Frankfurt am Main. Available on-line:
http://www.iers.org/iers/publications/tn/tn29/.
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4331 Apparent Place Algorithm

The object of this procedure is to formulate a transformation to compute the apparent geocentric
coordinates of a star, given its mean position aslisted in a catalogue. We review and provide amore
careful distinction of the following types of coordinates, already discussed to some extent in
previous Sections of this Chapter:

1. catalogued mean coordinates: barycentric coordinates referring to the mean equator and
equinox at the fundamental epoch of the catalogue (precession,
nutation, and proper motion have not been applied). In star
catalogues prior to 1984 the effect of Earth’s elliptical orbit on
annual aberration has been included and must be removed before
applying precession and proper motion, upon which the effect
must be restored (Mueller, 1969, p.116-118)32,

2. mean coordinates: barycentric coordinates referring to the mean equator and
equinox of the current date (precession and proper motion have
been applied, but nutation and corrections for other effects have

not been applied).

3. true coordinates: actual, instantaneous, barycentric coordinates referring to the true
equator and equinox of the current date (precession, nutation, and
proper motion have been applied, but corrections for parallax,
aberration, and refraction have not been applied).

4. apparent coordinates: geocentric coordinates referring to the true equator and equinox
of the current date (corrections for annual parallax and annual
aberration have been applied, but corrections for diurna parallax,
diurnal aberration, and refraction have not been applied).

5. topocentric coordinates apparent coordinates, but as observed at a point on the Earth’s
surface (corrections for diurnal parallax and diurnal aberration
have been applied, but corrections for refraction have not been
applied). For stars, we need not correct for diurnal parallax, but
diurnal aberration isan important effect to be corrected.

The agorithm proceeds by first determining the geocentric coordinates of the star, still referred
to the mean equator and equinox of epoch, tq, but at the barycentric time of observation, t. It is

32 Mueller, I.1. (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing Co.,
New York.
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first necessary, however, to determine the barycentric time of observation. Usually, we have some
time system in which we operate, e.g., Greenwich Sidereal Time, or Universal Time (Chapter 5).
The star catalogues and celestial reference systems are established with respect to dynamic time.
We will define the relationship between al of these time systems in Chapter 5. For now, assume
that the time of observation isin the scale of geocentric (terrestrial) dynamic time (TDT) interms
of Julian days. Let this time be denoted t'. Thus, t' is given as a TDT Julian date, e.g.,
t' = 2450871.5 , which correspondsto o" (midnight, civil timein UT) at Greenwich on the morning
of 27 February 1998. We now could convert this to the theoretically required barycentric time
scale, to account for relativistic effects. However, as mentioned by Seidelmann (1992, p.147)33,
who also provides a formula for the conversion, the inaccuracy of neglecting this may well be
tolerated. Thus, let t=t'. Thetimeinterval from the fundamental epoch, t,, of the catalogue, in
units of Julian centuries is given by (4.3). We will assume that tg =ty (see also (4.24)), and for
J2000.0, ty=2451545.0. The Julian day number for t can be obtained from the Julian calendar
(Astronomical Almanac, Section K)3#; then we compute the number of Julian centuries using

- t—1tg  t-2451545.0
36525 36525

(4.123)

To continue with the determination of geocentric coordinates of the star at the time of
observation, we require the location and velocity of the Earth at the time of observation in the
barycentric system of reference (mean equator and equinox of t;). We will also need the
barycentric coordinates of the sun for light-deflection corrections. The Jet Propulsion Laboratory
publishes the standard ephemerides for bodies of the solar system, called DE2003°. The
Astronomical Almanac, Section B, aso lists some of these coordinates, specifically:

Eg(t) : barycentric coordinates of Earth at time, t, referring to the equator and eguinox of tg .
Eg(t) : barycentric velocity of Earth at time, t, referring to the equator and equinox of t, .

We need only 3 and 5 digits of accuracy, respectively, to obtain milliarcsec accuracy in the star’s
coordinates. Also, the Astronomical Almanac lists

Sg(t) : geocentric coordinates of the sun at time, t, referring to the equator and equinox of tg .

These are the same as the negative heliocentric coordinates of Earth, — E,(t], from which we can

33 Seidel mann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.

34 The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory,
Washington, D.C.

£ http://ssd.jpl.nasa.gov/eph_info.html
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calculate the barycentric coordinates of the sun:

Sgt) = Eg(t) —EH(t) ; (4.124)
or we just consult DE200. Both Sg(t) and Ey(t) are needed to compute the general relativistic
light-deflection correction.

Now, we need the following information about the star:

1) 0 9y 7T catalogue mean coordinates and parallax of the star (i.e., in reference system of tg).

i) do, 50, fo : velocities of proper motion in reference system of t.

If rg(t) representsthe (3-D) coordinate vector of the star in the barycentric system at time, t, then
due to proper motion it differs form the vector at time, t, according to (see aso (4.48)):

rglt)=rgto) + Trgto) . (4.125)
Now let
Uglt) = rlorB(t) , (4.126)

where ry= ‘ rgto) ‘ . Substituting (4.125), we have (again, see (4.49) and (4.50))

o . - : .
o C0Sd; COSAy — SiNd, €OSa, 9, — COSA, SINA, A
0

r : .
Ug(t) = uglty) + 7 r—o cosd, Sinay—sindy sinag d, + cosd, cosay ay | (4.127)
0
Mo . -
9 Nd, + €cosd, O
0

where ug/to) = ( €0sd;, COsa, COSA, Sina, Sind, " isaunit vector, and where (refer to (4.52))

_ 1 ] |;0 -
ro_ml AU ; oo roft [rad/cent.] . (4.128)

Notethat Ugt) isnot aunit vector. To get aunit vector, so that we can writeit like ug(to) in terms
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of angles, we need to compute

uglt) = . (4.129)

Itis, of course, also important to ensure that all termsin (4.127) have the same units ([rad/cent.] in
this case, in view of (4.123)). Since the proper motion components refer to the coordinate system
of the fundamental epoch, t,, the correction for proper motion is done in that system, but the vector,
ug(t), does not indicate mean coordinates, because precession has not yet been applied. With first-
order approximation, we can aso compute ug(t) asfollows, using (4.53):

cos(& + 10y) cox(ay + Td)
uglt)=| cos(@+ 10y sin(ay+ Tag) | - (4.130)

sin(g + 13,

The corrections of the other effects are all based on information described in the coordinate
system of tg ; and, therefore, the steps toward the apparent coordinates do not follow a progression
through the types of coordinates, as defined above. We proceed asfollows. Let rg(t) represent the
3-D geocentric Cartesian vector of the star at epoch, t. Parallax accounts for the difference in
origins between the barycentric and geocentric systems, and we have from Figure 4.11:

relt) =rg(t) —Egt) (4.131)
Now, letting
Udlt)= rlor alt) . (4.132)

and substituting (4.131), aswell as (4.125) and (4.52), we have

Uglt) = uto) +rr()f8(to) — nEg(t)

4.133
= Uglt) - Egt), (4.133)

where the components of Eg are given in terms of AU. Using angles, we augment (4.130) to first-
order approximation:
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cos(d, + T50 + Ad) cos(ay + 1y + AQ)
ugt)=| cos(d,+ T50 +Ad) sin(ay+ g+ Aa) |, (4.134)

sin(9, + r50 + AJ)

where Aa and AJd account for annual parallax and are given, respectively, by (4.80) and (4.82).
Again, note that ug(t) is the corresponding unit vector, Ug(t)/ ‘ UG(t)‘ , neglecting second-order
terms. These coordinates still refer to the mean equator and equinox of the reference epoch, tg, but
now with the effects of annual parallax applied (they still are not mean coordinates).

One can now apply corrections for gravitational light-deflection and aberration according to
specific models. The light-deflection model makes use of Ey(t] and Sg(t) and the reader is
referred to (Seidelmann, 1992, p.149)36. We neglect this part asit only affects stars viewed near
the sun. The annual aberration can be included using vectors, according to (4.54), where the
aberrated coordinates are given in the form of a unit vector by

L udt)+Eglt)c
udﬂ_tmm+EdWc’ (4.135)

where, if Egt] is given in units of [AU/day], then the speed of light is given by
c=173.1446 AU/day . Alternatively, to first-order approximation, one can simply augment the
angular coordinates in (4.132) with the changes due to aberration given by (4.64) and (4.69). In
either case, the result yields coordinates at the current time that are geocentric and aberrated by
Earth’ s velocity, but still referring to the mean equator and equinox of tq

Finally, we apply precession, transforming the coordinates from a mean system at t, to the
mean system at t ; and we apply nutation, transforming the mean system at t to the true system at t,
according to (4.27):

u(t) = N(t) P(t,to) u'c() (4.136)

where P and N are given, respectively, by (4.16) and (4.25). Since U'g(t) is a unit vector, so is
u(t) ; and, its components contain the apparent coordinates of the star:

36 Seidelmann, PK. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.
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.u _ u
a=tan 12, S=tan"t z

u 2 2
X «/ux+uy

To bring the coordinates of the star to the Terrestrial Reference Frame requires a transformation
that accounts for Earth’srotation rate, c,, and for polar motion. We have

(4.137)

w(t) = W(t) Ry GAST) u(t) , (4.138)

where GAST is Greenwich Apparent Sidereal Time (Section 5.1), and W is the polar motion
matrix, given by (4.108). The coordinates, w(t), are the apparent coordinates of the star at time, t,
inaframethat is parale to the Terrestrial Reference Frame.

Using the new conventions (Section 4.1.3), the aternative transformation procedure substitutes
equation (4.29) for (4.136), where Q is given by (4.38) with X, Y, s, and a shown in (4.39),
(4.40), (4.41), and (4.47), respectively. In this case the components of the unit vector, u(t), are the
celestial coordinatesin aframe defined by the CIP (realized by the AU 2000 precession-nutation
model) and the CEO (rather than the equinox). The corresponding coordinates are called the
“intermediate right ascension and declination”, instead of apparent coordinates. Consequently, the
GAST in the transformation (4.138) must now be replaced by atime angle that refers to the CEO.
Thisisthe Earth rotation angle, defined in Section 5.2.1. The polar motion matrix, W, is the same
as before, but the extrarotation, s, may beincluded for higher accuracy (egquation (4.115)).

4332 Topocentric Place Algorithm

Topocentric coordinates of stars are obtained by applying diurnal aberration using the terrestrial
position coordinates of the observer. Diurnal parallax can be ignored, as noted earlier.
Furthermore, the topocentric coordinates and the velocity of the observer need only be approximate
without consideration of polar motion. We first find the observer’s geocentric position in the
inertial frame;

g(t) = R{—GAST]r , (4.139)

where r istheterrestrial position vector of the (stationary) observer (Earth-fixed frame). g(t) gives
“true” coordinates at the time of observation. Wefind g(t) according to
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0 —w, O
gt)=R4-GAST)| w, 0 0 |r, (4.140)
0 0 O

since GAST = wt , and apply nutation and precession to obtain the geocentric velocity in the mean
coordinate system of the fundamental epoch, tj:

G(t)=P(tto) N[t g[t) . (4.141)

This neglects asmall Coriolis term which occurs when taking time-derivativesin arotating (true)
system. Now the velocity of the observer, due to Earth’s rotation and orbital velocity, in the
barycentric system of t, isgiven by

Oglt) = Egt) + Gt) , (4.142)

which would be used in (4.135) instead of Eg(t). Theresult, (4.136), is then the topocentric place
of the star.

Again, with the new conventions, the Q-matrix and the Earth rotation angle (Section 5.2.1)
replace N, P, and GAST. A complete set of computational toolsis available from the U.S. Naval
Observatory on its internet site: ftp://maia.usno.navy.mil:80/conv2000/chapter5. These are
FORTRAN programs that compute the various transformations discussed above, with the older as
well as the new conventions. Details may be found in (McCarthy and Petit, 2003, Ch5, pp.20-
21)37.

37 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. IERS Technical Note 32, U.S. Nava
Observatory, Bureau International des Poids et Mesures.
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4.3.3.3 Problems

1. Given the mean celestial coordinates of a star: o =195°, 6=23° in the J2000 reference
system, determine the true-of-date coordinates of the apparent position of the star asit would be
observed at 3:00 am, Universal Time (in Greenwich, ¢=51.5°), on 4 July 2020. Apply precession,
nutation (18.6 year, semi-annual, and fortnightly terms only), parallax, aberration, and space motion.
Use the Julian day calendar available in the Astronomical Almanac and the following information:

a(to) = —0.003598723 rad/cent.
8(to) = + 0.000337430 rad/cent.
r(tg) =—22.2km/s

1= 3.6458%x10 % rad

Eg(t) =(0.200776901, ~0.911150265, —T0.394806169(JT A.U.
Ep(t) = 16551216, 3183909, 1380187)' x10~°A.U./day
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Chapter 5
Time

A system of timeisasystemjust like any other reference system (see Section 1.2), except that it is
one-dimensional. The definition of atime system involves some kind of theory associated with
changing phenomena. If the universein its entirety were completely static, there would be no time
as we understand it, and the only reason we can perceive time is that things change. We have
relatively easy access to units of time because many of the changes that we observe are periodic. |If
the changing phenomenon varies uniformly, then the associated time scale is uniform. Clearly, if
we wish to define a time system then it should have a uniform time scale; however, very few
observed dynamical systems have rigorously uniform time units. In the past, Earth’s rotation
provided the most suitable and evident phenomenon to represent the time scale, with the unit being a
(solar) day. It has been recognized for along time, however, that Earth’ s rotation is not uniform (it
isvarying at many different scales (daily, bi-weekly, monthly, etc., and even slowing down over
geologic time scales; Lambeck (1988)1). In addition to scale or units, we need to define an origin
for our time system,; that is, a zero-point, or an epoch, at which avaue of timeis specified. Findly,
whatever system of time we define, it should be accessible and, thereby, realizable, giving usatime
frame.

Prior to 1960, a second of time was defined as 1/86400 of a mean solar day. Today (since
1960), the time scale is defined by the natural oscillation of the cesium atom and all time systems
can be referred or transformed to this scale. Specifically, the Sl (Systéme International) second is
defined as.

1 Sl sec = 9,192,631,770 oscillations of the cesum-133 atom between two
hyperfine levels of the ground state of this atom. 5.1

1 Lambeck K. (1988): Geophysical Geodesy. Clarendon Press, Oxford.
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There are four basic types of time systemsin use:

1. Sdereal time:  scaledefined by Earth’ s rotation with respect to the celestial sphere.

2. Universal time: scale defined by Earth’ s rotation with respect to the mean sun.

3. Dynamictime: scaledefined by the time variable in the equations of motion describing the
dynamics of the solar system.

4. Atomictime scale defined by the number of oscillations in the energy states of the
cesium-133 atom.

We have aready encountered sidereal time when discussing astronomic coordinates (Section 2.3)
and dynamic time when discussing precession and nutation (Section 4.1). We present these again
with aview toward transformation between al time systems.

5.1 Sideea Time

Sdereal time, generally, is the hour angle of the vernal equinox; it represents the rotation of the
Earth with respect to the celestial sphere and reflects the actual rotation rate of the Earth, plus effects
due to precession and nutation of the equinox. Because of the nutation, we distinguish between
apparent sidereal time (AST), which is the hour angle of the true current vernal equinox, and
mean sidereal time (MST), which is the hour angle of the mean vernal equinox (also at the current
time).

The fundamental unit in the sidereal time system is the mean sidereal day, which equals the
interval between two consecutive transits of the mean vernal equinox across the same meridian
(corrected for polar motion). Also,

1 sidereal day = 24 sidereal hours = 86400 sidereal seconds. (5.2

The apparent sidereal time is not used as a time scale because of its non-uniformity, but it isused as
an epoch in astronomical observations. The relationship between mean and apparent sidereal time
derives from nutation. Referring to Fig 4.6, we have

AST = MST + Ay cose (5.3

where the last term is called the “equation of the equinox” and is the right ascension of the mean
equinox with respect to the true equinox and equator. Since the maximum-amplitude term in the
series for the nutation in longitude is approximately | Ay|= 17.2 arcsec, the magnitude of the
equation of the equinox is 17.2 cos(23.44°) arcsec = 1.05 s, using the conversion, 15° =1 hr.
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We specialize our definitions of sidereal time according to the astronomic meridian to which it
refers, as follows: local sidereal time (LST) (mean, LMST, and apparent, LAST) and Greenwich
sidereal time (GST) (mean, GM ST, and apparent, GAST), where

GST=LST-A,, (5.4)

and the longitude, A,, refersto the CEP, not the CIO (IRP). Clearly the equation of the equinox
applies equally to GST and LST. Dueto precession (in right ascension), 24 hours of sidereal time
do not correspond exactly to one rotation of the Earth with respect to inertial space. The rate of
general precession in right ascension is approximately (using (4.14) with (4.18f) and (4.189)):

m = 4612.4362 [arcsec/cent] + 2.79312 [arcsec/cent’] T (5.5)

where T isin Julian centuries. The amount for oneday is

ﬁm% = 0.126 arcsec/day = 0.0084 s/day = 6.11x10™ ' rad/day = 7.07x10" Prad/s .  (5.6)

5.2 Univesa Time

Universal time is the time scale used for general civilian time keeping and is based (only
approximately, since 1961) on the diurnal motion of the sun. However, the sun, as viewed by a
terrestrial observer, moves neither on the celestial equator, nor on the ecliptic (strictly speaking), nor
is the motion uniform on the celestial sphere. Therefore, the hour angle of the sun is not varying
uniformly. For these reasons and the need for a uniform time scale, a so-called fictitious, or mean
sun is introduced, and the corresponding time for the motion of the mean sun is known as mean
solar time (MT). The basic unit of universal time is the mean solar day, being the time interval
between two consecutive transits of the mean sun across the meridian. The mean solar day has 24
mean solar hours and 86400 mean solar seconds. Universal timeis defined as mean solar time
on the Greenwich meridian.

If t\, isthe hour angle of the mean (or fictitious) sun with respect to the local meridian, thenin
terms of an epoch (an accumulated angle), mean solar timeis given by:

MT =t,, + 180° (5.7)

where we have purposely written the units in terms of angles on the celestial equator to denote an
epoch. Theangle, 180°, is added because when it is noon (the mean sun is on the local meridian
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and t), =0), the mean solar time epoch is 12 hours, or 180 degrees. Again, in terms of an angle,
the universal time epoch in Greenwichis

UT =ty +180° . (5.8)

The relationship between the universal time and mean sidereal time scales can be established
once the right ascension of the mean sun, a,,, is determined. Alwaysin terms of angles (epochs),
we have from (2.180) and (5.8)

GMST = ay, +ty

(5.9)
= oy + UT—180° .

The right ascension of the mean sun is determined on the basis of an empirical expression (based
on observations), first obtained by Newcomb. The 1984 version (i.e., using modern adopted
constants) is asfollows

ay, = 18" 41M 50.54841°5 + (8,640,184.812866 7+ 0.093104 72 — 0.0000062 r3) B
(5.10)

= 280.460618374° + (36,000.7700536 7+ 0.000387933 12— 2.6x10~° r3> [deg] ,

where 1 is the number of Julian centuries of 36525 mean solar days since the standard epoch
J2000.0. The units of each coefficient in (5.10) are such that the resulting term, when multiplied by
the power of 7, has units either of seconds (first equation), or of degrees (second equation). We
note that Greenwich noon defines the start of a Julian day; therefore, if we seek a,, for midnight in
Greenwich, the number of mean solar days since J2000.0 (which is Greenwich noon, 1 January
2000, or 1.5 January 2000, see Figure 4.1) is (from 4.24):

36525 7=+ 0.5, £1.5, £ 2.5, ... . (5.11)

Now, substituting (5.10) into (5.9), and solving for UT (the epoch), we find

UT = GMST — 100.460618374° — | 36,000.7700536 7+ 0.000387933 12— 2.6x10 13| [deq] .
(5.12)

The universal time scale relative to the mean sidereal time scale is obtained by taking the
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derivative of (5.12) with respect to 7 (mean solar Julian centuries). We have

d GMST - UT)
dr

= 36,000.7700536 [deg/cent] + (0.000775867 7—7.8x10~8 12| [deg/cent]
(5.13)

Hence, the number of degrees on the celestial equator between the epochs GMST and UT after one
mean solar day (dr = 1/36525 cent ) is

d(GMST — UT| = 36,000.7700536° + | 0.000775867 T — 7.8x1078 rz) [deg]) 136525 ; (5.14)

or, one mean solar day isasidereal day (360° or 86400 sidereal seconds) plus the excess being the
right-hand side, above, in degrees or sidereal seconds (see also Figures 5.1 and 5.2):

1d(M T)= 86400° + 236.55536790872° + (5.098097><1043 7—5.09x107° rz) [g] . (5.15)
From thiswe find

19(MT) _ 86636.55536790872° + (5.098097><10"6 7-5.00x10710 Tz) s

19msT) 86400°
(5.16)
= 1.002737909350795 + 5.9006x10 ! 7—5.9x107%° 72,
Neglecting the small secular terms:
1 mean solar day = 24" 03™ 56.5554° in sidereal time,
(5.17)

1 mean sidereal day = 23" 56™ 04.0905° in solar time .

A mean solar day is longer than a sidereal day because in order for the sun to return to the
observer’s meridian, the Earth must rotate an additional amount since it has advanced in its orbit
and the sunisnow in adifferent position on the celestial sphere (see Figure 5.1).
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extrarotation needed to
/ complete 1 solar day

1 sidereal day (1 rotation of the Earth)
Figure 5.1: Geometry of sidereal and solar days.

We notethat UT and ST are not uniform because of irregularitiesin Earth’ srotation rate. The
most important effect, however, in determining UT from observationsis due to polar motion; that is,
the meridian with respect to which the transit measurements are made is the CIO (fixed meridian on
the Earth’s surface), while UT should refer to the instantaneous rotation axis. Thus, one
distinguishes between the epochs:

UTO: universal time determined from observations with respect to the fixed meridian (the CIO
or IRP);
UT1: universal time determined with respect to the meridian attached to the CEP.

From Figure 4.21 we have

Acep=Ncio—4N, (5.18)
where AN isthe polar motion in longitude. Hence, as shown in Figure 5.3, the CIO meridian will
pass a point on the celestial sphere before the CEP meridian (assuming, without loss in generality,

that AN >0). Therefore, the GMST epoch with respect to the CIO comes before the GMST epoch
with respect to the CEP-

GMS-I-CEF):GMSTC|O+A/\ . (519)

Thus, from (5.12)
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UTl= GMSTCEP_"' = GMSTC|O+A/\—...

(5.20)
=UTO0+ AN
celestial equator

start of a mean solar day
UT=UT,
start of asiderea day
GMST = GMST,

\ S

vernal Greenwich

celestial equator

end of asidereal day
GMST_ = GMST + 360°

meridian

equinox

celestial equator

end of amean solar day

Greenwich UT, = UT+ 360° + d(GMST - UT)
/ meridian
d(GMST - UT)

vernal
equinox

Figure 5.2: Difference between asidereal day and a mean solar day.
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% ClO meridian

CEP meridi
YV meridian

Figure 5.3: Geometry for the relationship between UTO and UT1.

UT1 isstill affected by irregularities in Earth’ s rotation rate (length of day variations), which
can be removed to some extent (seasonal variations), thus yielding

UT2=UTL1 + corrections for seasonal variations . (5.22)

Presently, UT2 is the best approximation of UT to a uniform time (although it is still affected by
small secular variations). However, UT1 is used to define the orientation of the Greenwich mean
astronomical meridian through its relationship to longitude, and UT1 has principal application when
observations are referred to a certain epoch since it represents the true rotation of the Earth.

In terms of the Sl second, the mean solar day is given by

AT

19(MT) = 86400 — ECY (5.22)

where Ar, in seconds, is the difference over a period of n days between UT1 and dynamic time
(see Section 5.3):

AT=UT1-TDT . (5.23)
Thetime-derivative of At isalso called the length-of-day variation. From observations over the

centuries it has been found that the secular variation in the length of aday (rate of Earth rotation)
currently is of the order of 1.4 ms per century (Lambeck, 1988, p.607)2.

2 Lambeck K. (1988): Geophysical Geodesy. Clarendon Press, Oxford.
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521 Earth Rotation Angle

With the definitions of the Celestial Ephemeris Origin (CEO) and the Terrestrial Ephemeris Origin
(TEO), both being non-rotating origins on the instantaneous equator, we are able to define UT1
more succinctly. The angle between the CEO and the TEO (Figure 5.4) is known as the Earth
Rotation Angle, 8; and since neither the CEO nor the TEO, by definition, have angular rate along
the instantaneous equator due to precession and nutation, the time associated with Earth’ s rotation
rate, that is, UTL, isdefined smply as being proportional to &:

8 tur) =27 Yo+ Yy Ty1) (5.24)
where (), and ¢, are constants (with units of [cycle] and [cycle per day], respectively), and

7,7 = Julian UT1 date—t , (5.25)

and the Julian UT1 date is the Julian day number interpreted as UT (mean solar time) scale. The
fundamental epoch, tg, is, as usual, the Julian day number, 2451545.0, associated with Greenwich
noon, 1 January 2000. In practice, the Julian UT1 day number number is obtained from

UT1=UTC+ (UTL-UTC) , (5.26)

where UTC is Coordinated Universal Time (an atomic time scale, see Section 5.4), and the
difference, UT1 - UTC , is either observed or provided by the IERS. The constants, ¢, and ¢, ,
are derived below from theory and models; and the constant, 277y, , is Earth’s rotation rate in units
of [rad/day], if T,r=1d (=8640059).

If the new transformation, Q, equation (4.29), is used to account for precession and nutation,
then the Earth Rotation Angle, 8, should be used instead of the Greenwich Apparent Sidereal Time
(GAST), in the transformation between the Celestial and Terrestrial Reference Systems. Recall that
the total transformation from the Celestial Reference System to the Terrestrial Reference System
was given by (4.27) (or (4.107)) and (4.109), where we omit the observational effects, for the
moment:

UTrdt) = W'(t) Ry(GAST) N(t) P(tto) Ucrdto) - (5.27)

The new transformation, based on | AU resolutions adopted in 2000 and part of the new |ERS 2003
Conventions, isgiven by

Urdt) = W'(t) Ry(6) Q'(t) Ucrs | (5.28)
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where the polar motion transformation, W, is given by (4.115), and the precession-nutation
transformation, Q, is given by (4.38). The Greenwich Sidereal Time (GST) now is no longer
explicitly involved in the transformation, but we can demonstrate the essential equivalence of the old
and new methods of transformation through the relationship between the Earth Rotation Angle, 6,
and GST.

GAST
r % N
0
A
r N\
\\(M _ —w
. w
Y © / (TEO)
\ (C}EO) true (instantaneous) equator
Y
a(o)

Figure 5.4: Relationship between GAST and Earth Rotation Angle, 6.

From Figure 5.4, it is clear that if GAST is the hour angle, at the TEO, of the true vernal
equinox at the epoch of date, t, then

GAST = a(0) + 8, (5.29)

where a(o) istheright ascension of the CEO relative to the true equinox at t. The old precession
and nutation transformations, P and N, bring the reference 1-axis (reference equinox) to the true
equinox of date. Therefore, a further rotation about the CIP (formerly CEP) by a(o) brings the
1-axisto the CEO, o; and we have:

Ry(a(d))NP=Q", (5.30)

since the CEO is the point to which the transformation, Q" , brings the 1-axis due to precession and
nutation. Combining equations (5.29) and (5.30), we have

R3(6) Q" = Ry(GAST)NP (5.31)
showing that (5.27) and (5.28) are equivalent.
The GAST differs from the Greenwich Mean Sidereal Time (GMST) due to nutation of the

vernal equinox. This was defined as the “equation of the equinox” in Section 5.1. A more
complete expression may be found in (McCarthy and Petit, 2003, Chapter 5, p.15)3 and is derived
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in (Aoki and Kinoshita, 1983, Appendix 2)%; it includes the complete periodic part of the
difference between GAST and GMST. Without details, we have from (ibid, equ.(A2-39))

GAST = GMST + A ey i - (5.32
Recall equation (5.9),

GMST = ay, + UT1-180° , (5.33)
where a,, isthe right ascension of the mean sun and we have used UT1, specifically referring
universal time to the instantaneous Earth spin axis (the CIP pole). Substituting this and equation
(5.29) into (5.32), we have

6= UT1 + a, — 180° + Al pgyiggic— A(0) - (5.34)

Now, the right ascension of the mean vernal equinox, a(Ym) , consists of a periodic part and a
secular part, the periodic part being the equation of the equinox, defined above, and a secular part
(due to nutation), given by®

AQ gy = —0.00385 1 [arcseq] . (5.35)
Furthermore, from Figure 5.4, the right ascension of the mean verna equinox is given by:

oY= al0) +AYy) (5.36)
where A( Ym) is the instantaneous right ascension of the mean vernal equinox relative to the non-
rotating origin, o (with sign convention of positive eastward). As such (since the NRO does not

rotate on the equator during precession, by definition), — A(Ym) is the accumulated precession in
right ascension, having rate, m, as given in equation (5.5); seealso Figure 4.4. Therefore,

queriodic_ G(U) = a(Ym) ~ Mgecyiar — CY(O') = A(Ym) ~ Msecyiar (5.37)

and

3 McCarthy, D.D. and G. Petit (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Nava
Observatory, Bureau International des Poids et Mesures.

4 Aoki, A. and H. Kinoshita (1983): Note on the relation between the equinox and Guinot’s non-rotating origin.
Celestial Mechanics, 29, 335-360.

> Capitaine, N., B. Guinot, and J. Souchay (1986): A non-rotating origin on the instantaneous equator: definition,
properties and use. Celestial Mechanics, 39, 283-307.
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t

6=UT1+ a,,—180° — AQ gy — | Mat . (5.38)

o

to
Substituting the numerical values from (5.10), (5.5), and (5.35) yields

§ 1y1) = 271( 0.7790572732640 + 1.00273781191135448 77| [rad] , (5.39)

where 1,1 isthe number of mean solar days since 1.5 January 2000 (equation (5.25)), and where
UT1 in (5.38) should be interpreted as UT1=0.5day + UT1 dayssince 1.5 January 2000 .
Equation (5.39) is of the form of equation (5.24) and provides the linear relationship between the
Earth Rotation Angle, 8, and the time scale associated with Earth’ s rotation.

5.3 Dynamic Time

As aready discussed in Chapter 4, the dynamic time scale is represented by the independent
variable in the equations of motion of bodiesin the solar system. In theory it isthe most uniform
time scale known since it governs al dynamics of our local universe according to the best theory
(the theory of general relativity) that has been developed to date. Prior to 1977, the “dynamical”
time was called ephemeristime (ET). ET was based on the time variable in the theory of motion of
the sun relative to the Earth — Newcomb’ s ephemeris of the sun. This theory suffered from the
omission of relativistic theory, the dependence on adopted astronomical constantsthat, in fact, show
atime dependency (such asthe “constant” of aberration). It also omitted the effects of planets on
the motion.

In 1976 and 1979, the AU adopted a new dynamic time scale based on the time variable in a
relativistic theory of motion of all the bodies in the solar system. The two systems, ET and DT,
were constrained to be consistent at their boundary (a particular epoch); specifically

DT = ET at 1977 January 1.0003725 (1OI 00" 00™32.184° exactly) . (5.40)
The extrafraction in this epoch was included since this would make the point of continuity between
the systems exactly 1977 January 1.0 in atomic time, TAI (Section 5.4). Thisisthe origin point of

modern dynamic time. The unit for dynamic timeisthe Sl second, or, aso a Julian day of 86400
Sl seconds.
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Because of the relativistic nature of the space we live in, the origin of the spatial coordinate
system in which the timeis considered (in which the equations of motion are formulated) must be
specified. In particular, geocentric and barycentric time scales must be defined. We have:

TDT: Terrestrial dynamic time isthe dynamic time scale of geocentric ephemerides of bodiesin
the solar system. It is defined to be uniform and the continuation of ET (which made no
distinction between geocentric and barycentric coordinate systems). It isalso identical, by
resolution, to the time scale of terrestrial atomic physics.

TDB: Barycentric dynamic time is the time scale of barycentric ephemerides of bodies in the
solar system. The difference between TDB and TDT is due to relativistic effects caused
mainly by the eccentricity of Earth’s orbit, producing periodic variations.

In 1991, as part of aclarification in the usage of these time scalesin the context of general relativity,
the IAU adopted a change in the name of TDT to Terrestrial Time (TT). TT is a proper time,
meaning that it refers to intervals of time corresponding to events as measured by an observer in the
same frame (world-line) as occupied by the event. Thisisthe time scale most appropriate for near-
Earth applications (e.g., satellite orbits), where the Earth-centered frame is considered locally
inertial. TT isidentical to TDT and has the same origin defined by (5.40). It's scaleis defined by
the Sl second. It differsfrom atomic time only because of potentia errorsin atomic time standards
(currently no distinction is observed between the two scales, but the epochs are offset as noted
above). For relationships between TT and TDB and other scales based on coordinate time in
general relativity, the reader is directed to Seidelmann (1992)% and McCarthy (1996)’.

54 Atomic Time

Atomic time refers to the time scale realized by the oscillations in energy states of the cesium-133
atom, as defined in (5.1). The Sl second, thus, isthe unit that defines the scale; thisis aso the time
standard for International Atomic Time (TAI, for the French Temps Atomique International)
which was officially introduced in January 1972. TAI is realized by the BIPM (Bureau
International des Poids et Mesures) which combines data from over 200 high-precision atomic
clocks around the world in order to maintain the Sl-second scale as closely as possible. The TAI
scaleis published and accessible as a correction to each time-center clock. Inthe U.S,, the officia
atomic time clocks are maintained by the U.S. Naval Observatory (USNO) in Washington, D.C.,

6 Seidel mann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.

7 McCarthy, D.D. (ed.) (1996): IERS Conventions (1996). IERS Tech. Note 21, Observatoire de Paris, Paris.
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and by the National Institute of Standards and Technology (NIST) in Boulder, Colorado. Within
each such center several cesium beam clocks are running simultaneously and averaged. Other
participating centers include observatories in Paris, Greenwich, Tokyo, Ottawa, Braunschweig
(Germany), and Berne (Switzerland). The comparison and amalgamation of the clocks of
participating centers around the world are accomplished by LORAN-C, satellite transfers (GPS
playing the mgjor role), and actua clock visits. Worldwide synchronization is about 100 ns (Leick,
1995, p.34)8. Since atomic time is computed from many clocks it is also known as a paper
clock or astatistical clock.

Due to the exquisite precision of the atomic clocks, general relativistic effects due to the
gpatially varying gravitational potential must be considered. Therefore, the SI second is defined on
the “geoid in rotation”, meaning also that TAI is defined for an Earth frame and not in a
barycentric system.

Atomic time was not realized until 1955; and, from 1958 through 1968, the BIH maintained the
atomic time scale. The origin, or zero-point, for atomic time has been chosen officialy as o"o™os ,
January 1, 1958. Also, it was determined and subsequently defined that on 0" 0™ 0%, January 1,
1977 (TAI), the ephemeris time epoch was oo™ 32.184°, January 1, 1977 (ET). Thus, with the
evolving definitions of dynamic time:

ET-TAI=TDT-TAI =TT - TAI =32.184° . (5.41)

So far, no difference in scale has been detected between TAI and TT, but their origins are offset by
32.184°.

All civil clocks in the world now are set with respect to an atomic time standard. But since
atomic time is much more uniform than solar time, and yet we still would like civil time to
correspond to solar time, a new atomic time scale was defined that keeps up with universal timein
discrete steps. Thisatomic time scaleis called Universal Coordinated Time (UTC). It isadjusted
recurrently to stay close to universal time. UTC was established in 1961 by the BIH and is now
maintained by the BIPM. Initialy, UTC was adjusted so that

|UT2-UTC|<0.1s, (5.42)
which required that the UTC be modeled according to
TAI-UTC=b+s(t—tg) , (5.43)

where b is a step adjustment and s a frequency offset. As of 1972, the requirement for the
correspondence of UTC with universal time was |oosened to

8 Leick, A. (1995). GPS Satellite Surveying, 2nd ed. John Wiley & Sons, New Y ork.
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lUT1-UTC|<09s, (5.44)

withb=1s and s=0. The step adjustment, b, is called aleap second and is introduced either

July 1 or January 1 of any particular year. The last leap second (as of January 2007) was
introduced at the end of December 2005. The difference,

DUT1=UT1-UTC, (5.45)

is broadcast along with UTC so that users can determine UT1.
GPStimeisalso an atomic time scale, consistent with TAI to within 1 ps. Itszero pointis

to(GPS) = January 6.0, 1980 = JD2444244.5 (5.46)

and it was the same as UTC at that epoch only, since GPS time is not adjusted by leap seconds to
keep up with universal time. Thus, we have always that

t(GPS) = TAI —19.0s . (5.47)

These relationships among the various atomic time scales are illustrated along with dynamic timein
Figure 5.5.
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TAI = Temps Atomique International (International Atomic Time)

ET = Ephemeris Time; based on orbital motion of Earth, excluding general relativistic effects

TDT = Terrestrial Dynamic Time; Earth-centered and based on dynamics of Solar System incl. general relativity
TT =Terrestrial Time; the sameas TDT

UTC = Coordinated Universal Time (atomic time scale)

GPS time = atomic time scale for GPS

UT1 = Universal Time corrected for polar motion; based on Earth’s rotation, referring to CEP

Figure 5.5: Relationships between atomic time scales and dynamic time (indicated leap seconds are
schematic only).

Note in Figure 5.5 that the time scales of TAI and TDT (TT) are the same (1 Sl second is the
samein both), but they are offset. Also, thetime scalefor UTCis1 Sl second, but occasionaly itis
offset by 1s. Thetime scalefor UT1 isvery closeto 1 Sl second; that is, the difference in these
scalesisonly about 30 s over 40 years (compare this to the difference in scales between mean solar
time and mean sidereal time of 4 minutes per day!). The history of TAl —UTC (only schematically
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shown in Figure 5.5) can be obtained from the USNO?,

54.1 Deter mination of Atomic Time

Atomic time is currently the most precise and accessible of the uniform scales of time. It is
determined using frequency standards, or atomic clocks, that are based on atomic energy
oscillations. The standard for comparison is based on the oscillations of the cesium atom, but other
atomic clocks are used with different characteristics in stability and performance. For any signal
generator, considered as a clock, we assume a nearly perfect sinusoidal signal voltage:

V(t) = (Vo + OV(D) singt®) | (5.48)

where dV(t) isthe error in amplitude, which is of no consequence, and ¢t) is the phase of the
signal. The change in phase with respect to timeis ameasure of time. The phaseisgiven by

@t) = at + odft) (5.49)

where w istheided (radian) frequency of the generator (i.e., w is constant), and d¢{t) represents
the phase error; or, itstime derivative, d¢ft) , is the frequency error. Note that in terms of cycles per
second, the frequency is

f= . (5.50)
Thus, let
1 .. 1 ..
YO = odlt) = - o) (5.51)
be the relative frequency error.

Now, the average of the relative frequency error over someinterval, 7=t ., —ty,isgiven by

tl<+1

9k=1[ VO dt= 5 (St ) — Ot (552)

o

ty

9 ftp://maia.usno.navy.mil/ser7/tai-utc.dat
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The stability of the clock, or its performance, is characterized by the sample variance of the first N
differences of contiguous averages, v, with respect to theinterval, 7:

N 2

2 1 1/- —

Uy(T) “N 2 2(Yk+ 1—yk) : (5.53)
k=1

This is known as the Allen variance, and o, represents the fractional frequency stability of the
oscillator. Substituting (5.49) into (5.52) yields

Vo= oo (Wt ) — A - 1) | (554)

Putting thisinto (5.53) gives

N

_ 2
2N(CUT)2 kgl (q(tk+2) 2 (‘(tk+1) + ¢(tk)) ’ (5-55)

U)ZI(T) =

which isaform that can be used to compute the Allen variance from the indicated phase, ¢(t) , of the
oscillator.

Most atomic clocks exhibit a stability as a function of 7, characterized generally by ay(r)
decreasing as 1 increases from near zero to an interval of the order of a second. Then, ay(r)
reaches a minimum over some range of averaging times; thisis called the “flicker floor” region
and yields the figure of merit in terms of stability. For longer averaging times, after this minimum,
ay( 7) againrises. Table 5.1 is constructed from the discussion by Seidelmann (1992, p.60-61)10;
and, Figure 5.6 quditatively depicts the behavior of the square root of the Allen variance of different
types of clocks asafunction of averaging time.

10 seidelmann, PK. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books,
Mill Valley, CA.
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Table5.1: Fractiona frequency stabilities for various atomic (and other) clocks.

Clock stability (min o) rangeof 17
quartz oscillator >10" 13 l1<1<1day
cesum beam, laboratory 1.5x 10714 severd years
commercia 2 x 1012 T<1year
3x10” 1 < 1lday
Block 11 GPS 0(10™ %4 1< 1day
rubidium |aboratory >10" 13 < 1day
GPS 2x107 13 r<1day
hydrogen maser 2x10 % 103<r<10%s
104
12
10 \ quartz oscillator
1013
1014 cesium beam
10-15 |
hydrogen maser

T T T T T T T

101 10° 10! 102 108 104 10° 10°
T[9

Figure 5.6: Fractional frequency stability for various clocks.
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